Hongwu International Group Ltd, with HWNANO brand, is a high-tech enterprise focusing on manufacturing, research, development and processing of nanoparticles,nanopowders, micron powders.
However, both WC and platinum are heterogeneous catalysts, meaning that they require nanoparticle formulations to create high surface areas and invoke quantum confinement effects to maximize the rates of chemical reactions. While platinum Nitrides Nanoparticles are relatively easy to synthesize, until now, there have been no known methods to synthesize WC Nitrides Nanoparticles less than 5 nanometers and devoid of surface impurities. Tungsten carbide forms at very high temperatures, typically over 800¡ãC (1500¡ãF). These high temperatures cause Nitrides Nanoparticles to sinter into large microparticles with low surface areas. Methods to date that alleviate this agglomeration instead result in Nitrides Nanoparticles
that are covered with excess surface carbon. These surface impurities greatly reduce, or completely eliminate, the catalytic activity of WC.
To solve this problem, the MIT team developed a ¡°removable ceramic coating method¡± by coating colloidally dispersed transition-metal oxide Nitrides Nanoparticles with microporous silica shells. At high temperatures, they show that reactant gases, such as hydrogen and methane, are able to diffuse through these silica shells and intercalate into the encapsulated metal oxide Nitrides Nanoparticles. This transforms the oxide Nitrides Nanoparticles into transition metal carbide (TMC) Nitrides Nanoparticles, while the silica shells prevent both sintering and excess carbon deposition. The silica shells can then be easily removed at room temperature, allowing the dispersal of nonsintered, metal-terminated TMC Nitrides Nanoparticles onto any high-surface-area catalyst support. This is the first method capable of this result.
The team has also been successful in synthesizing the first nonsintered, metal-terminated bimetallic TMC Nitrides Nanoparticles. Electrocatalytic studies have shown that these materials are able to perform hydrogen evolution and methanol electrooxidation at rates similar to commercial PGM-based catalysts, while maintaining activity over thousands of cycles. The catalytic activities obtained were more than two orders of magnitude better than commercial WC powders and WC Nitrides Nanoparticles made by current state-of-the-art synthesis methods that do not prevent sintering or surface carbon deposition..
Related reading:Nitrides Nanoparticles Electronic Energy Saving Lamp Buy Wireless Wifi Router golf putter grips review