Perovskite Solar Cell Based on Nickel Dioxide

As an important device of renewable energy, solar cell has been the topic among people. However, the limited efficiency of traditional silicon-based solar cells restricts the application range of solar energy. In recent years, perovskite solar cell, as a new type of high-efficiency solar cell material, has the potential of high efficiency and low manufacturing cost, and has been paid attention by scientists. Nickel dioxide nanopowder(HW-S672) plays an important role in perovskite solar cells.

Solar cell is device that convert solar energy directly into electricity and is a kind of green and clean energy. Although the efficiency of traditional silicon-based solar cells continues to improve, the wide application is restricted due to the high cost of preparation. As a new type of solar cell material, perovskite solar cell has the advantages of high efficiency and low cost, and is considered to be an important direction for the development of solar cells in the future.

The working principle of the NiO2-based perovskite solar cell is to use the photosensitive nature of the perovskite structure to convert light energy into electricity. Perovskite is a kind of compound with special structure, which can achieve high efficiency photoelectric conversion. As the electrode material of the battery, nickel dioxide can provide good electron transport performance and electrical conductivity, which can help electrons transfer from the photosensitive layer to the electrode, and provide an effective electron collection channel, thus improving the efficiency of the solar cell.

The preparation methods of perovskite solar cells based on NiO2 mainly include solution method, vapor deposition method and solid phase method. Solution method is more commonly used. In the process of preparation, it is necessary to select suitable precursor, solvent and control reaction conditions, and prepare perovskite thin films by chemical reaction of solution and subsequent heat treatment.

In addition, nickel dioxide also has excellent optical properties, which can increase the light absorption capacity of perovskite solar cells and improve the photoelectric conversion efficiency. By combining its excellent electron transport performance and optical properties, nickel dioxide can facilitate the photoelectric conversion process of perovskite solar cells.

As a new kind of high efficiency solar cell material, perovskite solar cell has a broad application prospect. First of all, its preparation cost is relatively low. It can be produced in large scale to reduce the cost of solar cells. Secondly, perovskite solar cell based on nickel dioxide has high photoelectric conversion efficiency and can make full use of solar energy resources. In addition, the material also has good stability and long life, and can adapt to different application environments.

In summary, NiO2-based perovskite solar cell has a wide range of application prospects. Scientists are also conducting experiments to explore its infinite possibilities. It is believed that in the future, scientists will step by step further study the properties and preparation methods of the material, promote the development of solar cells, and contribute to the solution of energy problems.

Interesting Copper nanoparticles

Copper nanoparticle synthesis has been gaining attention due to its availability. However, factors such as agglomeration and rapid oxidation have made it a difficult research area. Pure copper nanoparticles were prepared in the presence of a chitosan stabilizer through chemical means. The purity of the nanoparticles was authenticated using different characterization techniques, including ultraviolet visible spectroscopy, transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and field emission scanning electron microscopy. The antibacterial as well as antifungal activity of the nanoparticles were investigated using several microorganisms of interest, including methicillin-resistant Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, Salmonella choleraesuis, and Candida albicans. The effect of a chitosan medium on growth of the microorganism was studied, and this was found to influence growth rate. The size of the copper nanoparticles obtained was in the range of 2–350 nm, depending on the concentration of the chitosan stabilizer.
Copper nanoparticles are very interesting, not only because they show unique nanoscale phenomena like plasmonic absorption and high surface to volume ratio, but also due to useful properties like antibacterial and fungicidal activity. Copper nanoparticles and metal oxide nanoparticles of copper have widespread commercial presence, especially as fungicides. Copper fungicides are extremely effective against certain species of fungi that are common agricultural pathogens. Copper nanoparticles show good to great antimicrobial property against many pathogenic microbes and also used as a commercial antimicrobial agent. Liquid copper dispersions are used as an antimicrobial spray or to prepare antimicrobial surfaces. Other copper nanoparticle applications include conductive ink, chemical sensors, bio sensors etc. Some of these applications may be difficult for you to reproduce at home.
In acidic conditions, copper metal (Cu) in the anode (copper rod attached to the positive wire of the power supply) oxidizes (loses electrons) to form copper ions (Cu+2). These copper ions are released to the solution and will slowly travel towards the cathode (copper rod attached to the negative wire of the power supply). At the cathode, these copper ions will gain electrons and reduces back to copper metal, leaving a metal deposit on the cathode side. This is the main concept behind, electrodeposition.
However, our system is bit different. We have ascorbic acid; a reducing agent (chemical that can donate electrons to induce reduction) in our solution. Also we heat up the solution to spice things up. Now, for the copper ions that are traveling across the solutions, the journey would not be as easy. This is because, copper ions present the ideal opportunity for ascorbic acid molecules to give off their electrons and reduce the copper ions to copper metal. Therefore, in our system copper particles will be formed well before copper ions reach to the cathode.
Ascorbic acid, will not only function as a reducing agent but also as a capping agent. This means that when small copper particles are formed, ascorbic acid molecules will cap or surround the particle making it difficult for similar copper particles to come near to each other. This prevents the uncontrolled growth of the particles to micron sized dimensions.

Related reading: Copper Oxide Nanoparticles Nickel Oxide Nanoparticles

Use of Nano Technology

Nano diamond also can be used in medicine for cancer, gastrointestinal disorders, skin disorders. It is non-toxic, non-carcinogenic or change the nature of rust. Nanodiamonds are super active adsorbent and biologically active positioning agent, greatly enhancing drug effect.

The Korea Science and Technology together with the Korea University has made a research that uncovered the effects of the nano-particles in killing bacteria and germs. However, their research showed that the nano-silver particles have microbe particles that are known to damage plants and animal cells that have been exposed to these particles.

Right after the research done, an alarm was raised to many washer companies and one of them was the Samsung Electronics which has been very active in their promotion of the nano diamond powder Health System in washers and their air conditioners.

Gu Man-bok, professor in the bioscience department of Korea University stated that their evaluation of the effects of the silver nano-particles on different organisms as well as the environment is now on going. They further stated that the experiments the department has been doing on rice fishes have shown that the toxic on these organisms has been high in concentration.

Gu further stated that his laboratory has joined hand in hand with the Ministry of Environment to do a research about the silver nano-particles effect on different forms of life and this was considered as a delayed effort due to the fact that many consumers have already purchased washers with this technology and they have already been exposed to these kinds of products. Silver-nano cutlery, electronics, clothes, toys, baby bottles and the face masks are also now being sold in the market.

In lieu of these researches, the government of USA is planning to ban the selling of these products starting next year of evidence of safety is not provided. However, the government of South Korea stated that it was not in their plans to regulate such products.

According to Yoon Jun-won, a researcher of National Institute of Environmental Research said that it is too early to decide whether they are going to regulate certain products or not because as of this time, there aren’t proven bad effects that are coming from these products.

For long, silver has been known to have the antiseptic effect and because of this, many Greeks in the olden days had used silver vessels for drinking water storage. Koreans have also chosen silver to make their chopsticks.

Because of this fact about silver, the modern technology has also maximized the used of silver as antibiotic. Through small particles with bigger surface areas, the particles can react with other materials more actively that is why many companies have taken advantage of the use of sliver particles that measure one nanometer.

In order to know the effects of the size of particles in sterilizing, Gu together with his colleagues has used a bacterium which was genetically modified to alter the damage that was incurred. Amazingly, it was out that super-oxide radical commonly described as deleterious molecules were produced by silver nano-particles and these radicals were not produced from normal silver ions.

LG Electronics as well as Samsung created washers with the silver-nano particles technology because of its power to kill bacteria. In fact, silver nano particles really kill bacteria, however; many scientists are still not certain of the safety it gives to humans. Hwang Ee-taek said that the research field is still in the elementary stage.

Another author who was also a part of the research said that many researchers are starting to become careful and aware of the results of the silver-nano particles to humans simply because of the worries that companies concerned may give them. Accordingly, this issue is such a sensitive one especially for big companies like Samsung.

Related reading: Nickel Oxide Nanoparticles Copper Oxide Nanoparticles

Antimicrobial Features of Nano Silver

Nanometer (nm) is the second smallest micron unit of measurement, a nanometer is a millionth millimeter, namely nanometer, which is one billionth of a meter. Nano-silver, nano-technology is the use of cutting-edge nano silver, nano technology appears, the silver in the nano state sterilization ability to produce a qualitative leap, little nano silver may have a strong bactericidal effect, can kill in minutes Death 650 kinds of bacteria, broad-spectrum bactericidal without any resistance, can promote wound healing, cell growth and repair of damaged cells without any toxicity, skin irritation also did not find any, which gives wide Application to antibacterial nano silver has opened up broad prospects, is the latest generation of natural antibacterial agent, nano-silver sterilization has the following characteristics:
Broad-spectrum antibiotic

Silver nanoparticles directly into the cell and oxygen metabolizing enzymes (-SH) combine to make a unique cell suffocated mechanism of action, can kill most bacteria in contact with, fungi, mold spores and other microorganisms. After eight domestic authorities found: their drug-resistant pathogens, such as E. coli, resistant Staphylococcus aureus, resistant Pseudomonas aeruginosa, Streptococcus pyogenes resistant enterococci, anaerobic bacteria, which are full of antibacterial activity; surface burns and trauma of common bacteria such as Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Candida albicans and other G +, G- pathogens have a bactericidal effect; Chlamydia trachomatis, a sexually transmitted disease caused by Neisseria gonorrhoeae also has a strong bactericidal effect.

An antibiotic can kill about six kinds of pathogens, and antibacterial coating nano silver can kill hundreds of pathogenic microorganisms. Kill bacteria, fungi, trichomonas, branch / chlamydia, gonorrhea, strong bactericidal effect of antibiotic resistant bacteria have the same role in the killing!
Potent bactericidal

It found, Ag 650 kinds of bacteria can kill within minutes. Nano silver particles and pathogens in the cell wall / membrane-bound, directly into the cell and quickly combine with oxygen metabolizing enzyme sulfhydryl (-SH), inactivating the enzyme, blocking the respiratory metabolism to suffocate it. Unique sterilization mechanism, making silver nanoparticles at low concentrations can rapidly kill pathogens.
Permeable

Silver nanoparticles with superior permeability, can rapidly penetrate the subcutaneous 2mm sterilization, for common bacteria, stubborn bacteria, resistant bacteria as well as the deeper tissue infections caused by fungi have a good bactericidal effect.
Repair and regeneration

Nano-silver can promote wound healing, promoting repair and regeneration of damaged cells, to rot myogenic, anti-bacterial anti-inflammatory improve microcirculation trauma to surrounding tissue, effectively activate and promote the growth of tissue cells, accelerate wound healing and reduce scarring generated.

Antibacterial lasting

Silver nanoparticles utilizing patented technology, outer layer of protective film can be gradually released in the human body, so the antibacterial effect.
No drug resistance

Nano-silver is a non-antibiotic agents: nano-silver can kill a variety of pathogenic microorganisms, stronger than antibiotics, antibacterial mechanism of silver nanoparticles unique 10nm size can quickly kill bacteria directly to the loss of reproductive capacity, and therefore, can not produce the next generation of drug resistance, and can effectively avoid drug resistance and cause recurrent permanently.

Silver applications in modern medicine

In 1884, the German obstetrician F. Crede (Claude), the concentration of 1% silver nitrate solution was dropped in the eyes of newborns to prevent blindness caused by neonatal conjunctivitis, the incidence of infant blindness dropped from 10% 0.2 percent, until today, many countries still using Crede prophylaxis.

In 1893, C. Von Nageli (Nag column) through a systematic study, first reported in the metal (especially silver) bacteria and other lower organisms lethal effect, so there may be a silver disinfectant. Since then, the use of silver into the modern era.

Silver in various forms used in modern medicine, comprising:

(1)silver: 0.5% silver nitrate standard solution for treating burns and wounds; 10-20% silver nitrate solution applied, it can be used for the treatment of cervical erosion.

(2)Silver sulfadiazine: Columbia University Charles L. Fox (Fox) professor and sulfadiazine silver compound, silver sulfadiazine produced its activity than the individual sulfa strong activity at least 50 times. 1968, silver sulfadiazine (Sulfadiazine Silver) introduced to the market, because of its variety of bacteria, fungi and efficient role in the killing has, naturally, painless way to completely repair the wound site without skin grafting, has become the treatment of trauma ( such as burns) important drugs. It has now been included in the national basic medical insurance drug list.

(3)colloidal silver or silver protein: an effective topical anti-infective substances, colloidal silver can be used for gynecological sterilization.

(4) silver plated materials: silver, founder of the research, AB Flick (Fleck), Dr. Silver has developed a product that is coated with a layer of silver on a bandage, used as a dressing. Inspired by him, people use silver antimicrobial resistance, have developed a silver-plated sutures, silver catheter. Currently the United States has a dozen silver-containing products, listed as a medical device to obtain FDA approval, including silver dressings, silver gelatin, silver powder and other types of medical products.

Related reading: nano diamond powder Nickel Oxide Nanoparticles

Application Status of Nano Nickel Oxide

1、catalyst
Nickel Oxide Nanoparticles is a better catalytic oxidation catalyst, Ni2 + has a 3d orbital, has a tendency to multi-electron oxygen adsorbed preferentially on the other reducing gases have the effect of activating and reducing gas O2 plays a catalytic decomposition of organic matter synthesis, conversion processes, such as gasoline hydrocracking, petrochemical processing hydrocarbon conversion, heavy oil hydrogenation process, NiO is a good catalyst. In the catalytic combustion of natural gas, in order to avoid the reaction temperature is too high in the air oxidation of N2 NOx, and unburned CO produced entirely using NiO / CuO-Zr02 composite catalyst to improve its high temperature stability. In the process of the preparation of carbon nanotubes, used in the NiO / Si02 composite catalyst and higher Ni content, high yielding synthesis of carbon nanotubes, the diameter distribution is narrow, and NiO content and shape directly affects the carbon nano Yield and Characters tube. In wastewater treatment, NiO is remove CH4, cyanide, N2, prompting NOx decomposition catalyst. NiO as Photocatalytic Degradation of Acid Red catalyst, in the treatment of organic wastewater, the effect is very significant.

2、glass ceramic additives and colorings
Ceramics by NiO to increase its impact, when added to NiO (O.02 (wt)%), can also improve the electrical properties of materials, such as piezoelectric properties and dielectric properties. Plus NiO in the glass is mainly controlled color glass can absorb ultraviolet in brown coloration stable on transparent glass containing a small amount of NiO. Transparent glass mirrors and decorative glass, are added the right amount of NiO as a coloring agent.

3、Battery Electrode
With the continuous development of communication and information technology, the capacitor has also been an unprecedented development. Because ultracapacitors now has a much higher energy density than electrostatic capacitors and much higher power density than traditional chemical power becomes a hotspot. According to the research showed that ruthenium oxide is the most studied, the best performance of an electrochemical capacitor electrode material, but because it’s very expensive hindered its large-scale application. Activated carbon resistance and larger features make it sights on transition metal oxides. The transition metal oxide because of its own quasi-capacitance phenomenon as an electrode material for supercapacitors. Currently, the use of Ni, Mn, Co and other oxides of resistance is small, inexpensive, and is larger than the capacity and other characteristics, battery electrode materials made of concern. Molten carbonate fuel cell using NiO as the cathode, with gas or natural gas as fuel, is a power generation efficiency than conventional thermal power of clean energy. And nano-NiO battery Compared with ordinary NiO battery has obvious advantages discharge, the discharge capacity significantly increased, electrochemical performance is improved.

4、Sensor
NiO is more and more attention in recent years, gas sensor material. At present, made into nano NiO formaldehyde sensor, CO sensor, H2 sensors used in actual production.

Related reading: silicon dioxide nanoparticles aluminum oxide nanopowder

Do You Know Gold Nanoparticles?

Ultrasmall, crystalline, and dispersible NiO nanoparticles are prepared for the first time, and it is shown that they are promising candidates as catalysts for electrochemical water oxidation. Using a solvothermal reaction in tert-butanol, very small nickel oxide nanocrystals can be made with sizes tunable from 2.5 to 5 nm and a narrow particle size distribution. The crystals are perfectly dispersible in ethanol even after drying, giving stable transparent colloidal dispersions. The structure of the nanocrystals corresponds to phase-pure stoichiometric nickel(ii) oxide with a partially oxidized surface exhibiting Ni(iii) states. The 3.3 nm nanoparticles demonstrate a remarkably high turn-over frequency of 0.29 s–1 at an overpotential of g = 300 mV for electrochemical water oxidation, outperforming even expensive rare earth iridium oxide catalysts. The unique features of these NiO nanocrystals provide great potential for the preparation of novel composite materials with applications in the field of (photo)electrochemical water splitting. The dispersed colloidal solutions may also find other applications, such as the preparation of uniform hole-conducting layers for organic solar cells.

Gold has always been the one precious material people like best. Due to its intrinsic value, buying the yellow metal has been seen as a good way of securing one’s money. Big players on the market prefer it in the form of bullion, whereas small investors settle themselves with purchasing fine pieces of gold jewelry. In modern times though, gold has ceased to be merely a safe investment opportunity or exchange currency. As a result of extensive research and continuous development, it has been discovered that gold can be used successfully for scientific purposes as well.

One of these special uses of gold refers to what is called ‘nanogold’, ‘colloidal gold’ or ‘gold nanoparticles’, i.e. sub-micrometer-sized particles of gold dispersed in a fluid, usually water. The existence of these special gold particles has been known to people since ancient times, yet it was in 1850s that scientists focused their full attention on them. The main reasons behind this interest for gold nanoparticles are their extraordinary optical, electronic and molecular-recognition properties. These properties allow for the gold nanoparticles to have applications in various fields, including electron microscopy, electronics,Nickel Oxide Nanoparticles,nanotechnology and materials science.

Biological electronic microscopy is one of the areas where gold nanoparticles have been extensively used as contrast agents. They can be associated with many traditional biological probes such as antibodies, lectins, superantigens, glycans, nucleic acids and receptors. Because gold particles having various sizes can be easily spotted in electron micrographs, it is possible for multiple experiments to be conducted simultaneously.

In what concerns the domain of health and medical applications, gold nanoparticles have been successfully used as part of the treatment for some diseases. Rheumatoid arthritis was among the first conditions where use of gold was part of the therapy since it has been found that gold particles implanted near the arthritic hip joints relieve pain. There have also been some in vitro experiments which have proved that gold nanoparticles combined with microwave radiation can destroy the beta-amyloid fibrils and plaque which are characteristic for Alzheimer’s disease. But perhaps the most important medical purpose for which gold nanoparticles can be used is the localization and treatment of cancer. It has already been shown that by directing gold nanoparticles into the nuclei of cancer cells, they can only not hinder them from multiplying, but also kill them.

As we can see, for the modern society of today gold has become more than just merchandise and by buying it we do not just secure our investments, but our health as well. With the help of science, researchers have been able to explore the great latent potential gold has. Just like the professionals in the business whose opinion is of great value for the buyers, specialists in important areas such as medicine can testify about gold’s benefits too.

Related reading: silicon dioxide nanoparticles antibacterial coating nano silver

Nano Diamond Powder at Its Best

The unique features of nanodiamonds have demonstrated unprecedented performance in various fields. Nanodiamond powder is a state-of-the-art material widely used in polishing compositions, coatings, lubricants and polymers. Currently nanodiamond powder is rapidly finding its way into biomedicine, Thermal Management in electronics, energy storage, field emission displays and other advanced applications.

Ray’s technology for producing nanodiamonds is based on the laser treating of specially prepared targets containing carbon soot mixed within hydrocarbon media. In contrast to the traditional technology of nano diamond powder synthesis by detonation of explosives in metal reactors, Ray’s method is controllable, environment-friendly and non-hazardous. Ray-nanodiamonds are of much higher purity than detonation nanodiamonds available today in the market. Industrial manufacturing of nanodiamonds by Ray technology will lead to significant reducing the cost, better results in most existing applications, rapid enhancing of Global Nanodiamond Powder Market and appearance of new nanodiamond applications where the purity of powder is of special importance.

In addition, it has developed new approach in the design novel nanodiamond composite materials with desired properties. This technology is based on special nanodiamond surface modification, full disaggregation and covalent bonding between diamond nanocrystals and molecules of chosen material. Uniform introducing nanodiamonds within the medium results in increase of nanodiamond performance in each compound and in the possibility to reduce nanodiamond content and the cost of the composite material. Due to this innovative approach, it has developed low cost and highly efficient nanodiamond based products for various technological processes.

The usability and applicability of nanotechnology is wide-ranging. The principle of nanotechnology that allows man to manipulate the molecular structure of materials has also made it possible for new innovations to flourish. Today, nanotechnology has grown to such an extent that about a thousand products are being developed or manufactured in laboratories all around the world using the technology. Passive nano-materials are already available for the cosmetics and food industry. Carbon allotropes nano-materials are also being used for textile, food packaging, appliances and many other manufacturing sectors.

The building industry has also adopted the use of nano-materials for surface and protective coatings products, using what is called “surface functionalized nano-materials.” Nano-particles like dodecanethiol functionalized gold particles have unique surface chemistries that can be controlled. Their adhesion properties can be changed. Nano-powders can be dispersed to polymers and protective coatings. When these nano-materials are combined with coatings and applied to target surfaces, they change the surface properties and make it more resistant to UV rays, typical corrosion, and many types of damages.

Nanotechnology Innovation: Protective Super-Paints

The coatings industry is stepping up the production of nanotechnology products. Just last year, an Italian paint manufacturer developed superpolymers and protective coatings based on a patented nanotechnology. The results are anti-corrosive fire-resistant super-paints based on nano-clay composites. Nano-clay is a material that has outstanding barrier properties and is very cost-efficient in its application. The anti-corrosive coatings will soon be in the market this 2010.

Many other anti-corrosion formulations based on nano-materials are also used in the construction and underwater industries. Heavy machinery painting applications often require the best performance in protective coatings. In the oil extraction and energy generation industries, nano-tech protective coatings that are resistant to fluctuating and extreme temperatures are also being used.

Excellent Surface Protection with Nanotechnology

In terms of surface protection, nanotechnology is often used to formulate nano-scale coatings that make the target surfaces high-performing and resistant to damages.

The Diamon Fusion® nanotechnology is one good example of this technological advancement. Theirs is a patented technology to manufacture capped silicone films. Using a patented chemical vapor deposition process, the technique is employed to silicon-dioxide-based surfaces. These coatings are also effective on glass, ceramic, granite or porcelain surfaces. The technology involves a two-stage chemical process. The first stage creates cross-linked films in silica-treated surfaces. The second stage caps the surface. The coatings thereby increase the surface’ ability to repel water intrusion. Aside from this unique waterproofing property, the protective coatings can also provide the surface with good resistance against surface contaminants. In essence, the protective coatings imbue the surface with easy self-cleaning abilities.

Diamon Fusion® coatings are applied in an air-tight room using a vapor deposition system for high-volume and batch applications. It can also be hand-applied as a liquid product to smaller projects. Whatever method of application was used, the coatings act in the same way. They create cross-linked and branched, capped silicone films in the surface. The final film is clear-colored and seals the surface tightly. The bond formed by the chemical process is unbreakable from then on.

Related reading: Nickel Oxide Nanoparticles multi walled carbon nanotubes