Summary of the various applications of nano graphene on mobile phones

Graphene nanopowder  is a two-dimensional material. Carbon atoms are arranged in a hexagonal shape and are connected to each other to form a carbon molecule. Its structure is very stable. As the number of connected carbon atoms increases, the two-dimensional carbon molecule plane keeps expanding, and so does the molecule. A single layer of graphene nanoparticles is only one carbon atom thick, that is, 0.335nm, which is equivalent to 1/200,000 of the thickness of a hair. There will be nearly 1.5 million layers of graphene in 1 mm thick graphite. Graphene is the thinnest known material and has the advantages of extremely high specific surface area, superior electrical conductivity and strength. The existence of the above advantages is that it has a good market prospect. Various applications of nano graphene on mobile phones are as follows:

 

Screen

Graphene screens can use force sensors, bringing a new dimension to touchscreen technology. Furthermore, thanks to graphene’s high toughness, these new properties can be integrated into flexible screens, which are useful for wearable technology.

 

Phone case

Graphene is a high-strength material. Mixed with resins and plastics, or even just as a coating, graphene could be used to make safer helmets, stronger aircraft parts and more durable building materials. Combining graphene with a phone’s case could make it even stronger, and we might never have to worry about it falling off again!

 

Antennas and Communications

Graphene could boost optical data communications to unprecedented rates while reducing energy consumption and transmission errors. By 2020, the graphene flagship aims to link more than 400 gigabits of data per second. Graphene can also serve as the basis for flexible near-field communication (NFC) antennas, enabling new technologies such as electronic banknotes or smart wallets.

 

Sensors

Graphene sensors have many applications: linking to health sensors throughout our bodies, monitoring high-risk infections, oxygen and sugar levels, correcting our posture, and even helping us track neurological pathologies. Sensors can also detect and analyze our environment.

 

Processors and Electronics

Graphene’s electronic properties allow us to make faster and more reliable phone accessories. Graphene has high strength, conductivity, yet thin — just one atom thick, enabling thinner and faster microprocessors for smart products and the Internet of Things. Graphene and related materials are so flexible that devices can be integrated into textiles or even ‘stickers’ directly on the skin.

 

Battery

Graphene can be used to improve the capacity, efficiency and stability of batteries. Graphene batteries can have higher energy storage and better performance in terms of service life and charging time. Graphene and related materials can also be used to improve the performance of other energy storage solutions, such as supercapacitors. Another role of graphene in graphene-based lithium-ion batteries is to improve heat dissipation.

 

Headphones/Speakers

Graphene could make headphones and speakers more energy-efficient and lighter, while producing better sound. As membranes become lighter, they are often too FL releasable and generate unnecessary vibration and noise. Graphene is flexible and strong, so distortion is reduced and people can enjoy their favorite music sources with unprecedented clarity!

Summary of the various applications of nano graphene on mobile phones

Graphene is a two-dimensional material. Carbon atoms are arranged in a hexagonal shape and are connected to each other to form a carbon molecule. Its structure is very stable. As the number of connected carbon atoms increases, the two-dimensional carbon molecule plane keeps expanding, and so does the molecule. A single layer of graphene is only one carbon atom thick, that is, 0.335nm, which is equivalent to 1/200,000 of the thickness of a hair. There will be nearly 1.5 million layers of graphene in 1 mm thick graphite. Graphene is the thinnest known material and has the advantages of extremely high specific surface area, superior electrical conductivity and strength. The existence of the above advantages is that it has a good market prospect. Various applications of graphene oxide powder on mobile phones are as follows:

Screen

Graphene screens can use force sensors, bringing a new dimension to touchscreen technology. Furthermore, thanks to graphene’s high toughness, these new properties can be integrated into flexible screens, which are useful for wearable technology.

Phone case

Graphene is a high-strength material. Mixed with resins and plastics, or even just as a coating, graphene could be used to make safer helmets, stronger aircraft parts and more durable building materials. Combining graphene with a phone’s case could make it even stronger, and we might never have to worry about it falling off again!

Antennas and Communications

Graphene could boost optical data communications to unprecedented rates while reducing energy consumption and transmission errors. By 2020, the graphene flagship aims to link more than 400 gigabits of data per second. Graphene can also serve as the basis for flexible near-field communication (NFC) antennas, enabling new technologies such as electronic banknotes or smart wallets.

Sensors

Graphene sensors have many applications: linking to health sensors throughout our bodies, monitoring high-risk infections, oxygen and sugar levels, correcting our posture, and even helping us track neurological pathologies. Sensors can also detect and analyze our environment.

Processors and Electronics

Graphene’s electronic properties allow us to make faster and more reliable phone accessories. Graphene has high strength, conductivity, yet thin — just one atom thick, enabling thinner and faster microprocessors for smart products and the Internet of Things. Graphene and related materials are so flexible that devices can be integrated into textiles or even ‘stickers’ directly on the skin.

Battery

Graphene can be used to improve the capacity, efficiency and stability of batteries. Graphene batteries can have higher energy storage and better performance in terms of service life and charging time. Graphene and related materials can also be used to improve the performance of other energy storage solutions, such as supercapacitors. Another role of graphene in graphene-based lithium-ion batteries is to improve heat dissipation.

Headphones/Speakers

Graphene nanopowder could make headphones and speakers more energy-efficient and lighter, while producing better sound. As membranes become lighter, they are often too FL releasable and generate unnecessary vibration and noise. Graphene is flexible and strong, so distortion is reduced and people can enjoy their favorite music sources with unprecedented clarity!