As new materials in the technological revolution, ceramic materials have attracted the attention of some developed countries as early as ten years ago. The fatal shortcomings of ceramic materials are its brittleness, low reliability and low repeatability, which seriously affect the application range of ceramic materials. Only by improving the fracture toughness of ceramics and providing its reliability and service life can ceramic materials truly become a new type of widely used material. Therefore, ceramic strengthening and toughening technology has always been a hot topic of discussion in the market.
Two commonly used ceramic toughening methods and materials include:
1) Beta Silicon Carbide Whisker(SiC-W) and Particle(SiC) Toughening
Silicon carbide(SiC) whiskers are added to the ceramic materials to improve the brittleness, enhance the toughness and strength of them, so that the ceramic matrix composite material can significantly improve the impact toughness and shock resistance, and reduce the brittleness of the ceramic material. At the same time, the ceramic has protective fibers. So that it will not be oxidized at high temperature, has high temperature strength and elastic modulus.
Ceramic silicon carbide whiskers are small ceramic single crystals with a certain aspect ratio and few defects, so they have high strength and are ideal toughening reinforcements for ceramic matrix composites. The macroscopic morphology of ceramic silicon carbide whiskers is flocculent powder. When preparing composite materials, the whiskers can be directly dispersed and then mixed with the matrix powder uniformly. The mixed powders are also hot-pressed and sintered to obtain dense whisker-toughened ceramic matrix composites.
2) Phase transformation toughening of ZrO2 Zirconia Nanopowder
The phase transformation toughening effect is remarkable, and it is mainly used in zirconia ceramics. Yttrium nano-zirconia(YSZ), phase-transformation toughened ZrO2 feldspar ceramics is a promising new type of structural ceramics. It mainly uses ZrO2 phase-transformation properties to improve the fracture toughness and flexural strength of ceramic materials, so that they have excellent mechanical properties, low high thermal conductivity and good thermal shock resistance. It can also be used to significantly improve the toughness and strength of brittle materials, and is an important toughening agent in composite materials and composite ceramics.
The outstanding properties of ZrO2 ceramics make it one of the most widely used oxide ceramics. Toughened ceramics based on ZrO2 materials have broad application prospects in machinery, electronics, petroleum, chemical industry, aerospace, textile, precision measuring instruments, precision machine tools, bioengineering and medical equipment and other industries. Because the partially stabilized zirconia has low thermal conductivity, good strength and toughness, low elastic modulus, thermal shock resistance and high working temperature (1100 ℃), it is used to manufacture diesel engine parts and internal combustion engine parts. It has the advantages of small size, light weight and high thermal efficiency, and is an effective energy-saving engine. The application of ZrO2 toughened ceramics in internal combustion engines is successful.
If you’re interested in further info or in need of SiC whisker, SiC particles, ZrO2 nanopowders, pls feel free to contact us now!