Hongwu International Group Ltd, with HWNANO brand, is a high-tech enterprise focusing on manufacturing, research, development and processing of nanoparticles,nanopowders, micron powders.
A joint team of researchers from Japan’s Okinawa Institute of Science and Technology (OIST) and the University of Otago, New Zealand has developed a new method for administering drugs to highly specific target sites using a combination of laser technology, Carbides Nanoparticles, and neuroscience.
“With this method, we can administer a wide range of drugs with precise timing and duration using laser pulses with sub-second accuracy,” Takashi Nakano, a member of the research team who works in the OIST Neurobiology Research Unit, said in a press release published recently on OIST’s website. “We are very excited about the potential this new tool brings to neurobiological research.”
In a recent study, the results of which have been published in the journal Scientific Reports, researchers tested their new technique as a possible treatment method for Parkinson’s disease.
Because Parkinson’s Disease disrupts the body’s release of the neurochemical dopamine, researchers wanted to use their technique to manually simulate and restore this natural process. They began by encapsulating dopamine inside a shell of fat, called a liposome, which was then tethered to a gold nanoparticle. When a pulsating femtosecond laser hit the gold, the nanoparticle transferred the energy into the liposome, causing it to open and release the encased dopamine..
Related reading:Carbides Nanoparticles Electronic Energy Saving Lamp 3G Wifi Router Power Bank canned beer
Titanium dioxide is able to kill bacteria itself due to its properties as a photocatalyst
Hongwu International Group Ltd, with HWNANO brand, is a high-tech enterprise focusing on manufacturing, research, development and processing of nanoparticles,nanopowders, micron powders.
A group of researchers at the Shanghai Institute of Ceramics in the Chinese Academy of Sciences are looking to combat these dangerous sub-dermal infections by upgrading your new hip or kneecap in a fashion appreciated since ancient times ¨C adding gold. They describe the results of tests with a new antibacterial material they developed based on gold Carbides Nanoparticles in the journal Applied Physics Letters, from AIP Publishing.
“Implant-associated infections have become a stubborn issue that often causes surgery failure,” said Xuanyong Liu, the team’s primary investigator at the Shanghai Institute of Ceramics. Designing implants that can kill bacteria while supporting bone growth, Liu said, is an efficient way to enhance in vivo osteointegration.
Titanium dioxide is able to kill bacteria itself due to its properties as a photocatalyst. When the metal is exposed to light, it becomes energetically excited by absorbing photons. This generates electron-hole pairs, turning titania into a potent electron acceptor that can destabilize cellular membrane processes by usurping their electron transport chain’s terminal acceptor. The membrane is gradually destabilized by this thievery, causing the cell to leak out until it dies..
Related reading:Carbides Nanoparticles Wireless Bluetooth Speaker 3G Wifi Router Power Bank Heavy duty magnetic door stoppers
While platinum-group metals (PGMs) make the most stable and active catalysts
Hongwu International Group Ltd, with HWNANO brand, is a high-tech enterprise focusing on manufacturing, research, development and processing of nanoparticles,nanopowders, micron powders.
In a paper published recently in the journal Angewandte Chemie, an MIT team has explained a process of synthesizing catalysts made using modified tungsten carbide (WC) Nitrides Nanoparticles as an alternative to platinum.
While platinum-group metals (PGMs) make the most stable and active catalysts, they are unsustainable resources.
In this way, tungsten, with six valence electrons, can be electronically modified to mimic platinum, which has 10 valence electrons, by reacting it with carbon (four valence electrons) to give the ceramic material tungsten carbide. Numerous studies have shown that WC is indeed platinum-like, and able to catalyze important thermo and electrocatalytic reactions that tungsten metal cannot such as biomass conversion, hydrogen evolution, oxygen reduction, and alcohol electrooxidation. Importantly, tungsten is more than three orders of magnitude more abundant than platinum in the Earth’s crust, making it a viable material for a global renewable-energy economy.
The team’s next steps include the synthesis of other bimetallic TMCs, as well as transition metal nitride (TMN) Nitrides Nanoparticles. The team is investigating these materials for other electrocatalytic reactions as well as thermal catalytic reactions, such as hydrodeoxygenation for biomass reforming.
This new method unlocks a broad range of monometallic and heterometallic transition metal carbide and nitride Nitrides Nanoparticles that researchers previously have been unable to synthesize or study,” said Yuriy Rom¨¢n, an assistant professor of chemical engineering who worked on the technology. “While our research focuses mainly on the sustainable replacement of PGMs in thermal and electrocatalytic applications, we also anticipate broader impacts of our new TMC and TMN technologies outside catalysis. Because of their unique chemical, mechanical, and electronic properites, carbides and nitrides have garnered much attention for use in applications as diverse as supercapacitors, medical implants, optoelectronics, coatings, and high-temperature materials for the aerospace and nuclear sectors.”
Related reading:Nitrides Nanoparticles Electronic Energy Saving Lamp 3G Wifi Router Power Bank Xinjiang tour