Two common anti-UV materials: nano titanium dioxide (TiO2) and nano zinc oxide (ZnO)

Nano zinc oxide (ZnO) and nano titanium dioxide (TiO2) are two commonly-used oxide materials for UV resistance.

 

They have special optical and chemical properties at the nanoscale, making them important candidates in the field of UV resistance.

 

  1. Nanozinc oxide (ZnO), as an excellent ultraviolet shielding agent, shows good ultraviolet absorption properties in the ultraviolet spectrum range. It has high transmittance and excellent optical properties, so it is widely used in the preparation of anti-UVcoatings, fabrics and other products as it has a shielding effect on both UVA (long wave 320 ~ 400nm) and UVB (medium wave 280 ~ 320nm).

 

  1. Nanotitanium dioxide(TiO2)has excellent chemical stability, thermal stability and non-migration, strong achromatic and hiding power, low corrosiveness, good dispersibility, and is non-toxic, odorless and non-irritating, safe to use, and also has the function of sterilization and deodorization.

 

More importantly, nano titanium dioxide can not only absorb ultraviolet rays, but also emit and scatter ultraviolet rays, so it has strong UV resistance. Compared with the same dose of organic anti-UV agents, its absorption peak in the ultraviolet region is higher. Moreover, nano TiO2 has a blocking effect on both medium-wave and long-wave ultraviolet rays, unlike organic anti-UV agents that only have a shielding effect on medium-wave or long-wave ultraviolet rays. Researchers add light shielding agents, light stabilizers, etc. to achieve photoaging resistance of polymer material products, and rutile-type nano TiO2 is non-toxic and odorless to ultraviolet light UVA (315 ~ 400 nm) and UVB (280 ~ 315 nm) ) have a very good shielding effect, do not decompose or discolor after absorbing ultraviolet light, and have excellent stability and durability.

 

  1. The combined use of zinc oxidenano and titanium dioxide nano is also a common anti-UV strategy. Their combined use can give full play to their respective advantages and improve the anti-ultraviolet effect.

Since a single oxide absorbs ultraviolet light in a limited wavelength range, the preparation of UV-resistant nanocomposite oxides has attracted increasing attention from researchers.

For example, nano titania mainly has good absorption performance at 280~350nm, but its absorption at 350~400nm is weak. Although nano ZnO’s short-wave absorption performance is not as good as nano TiO2, it can provide very broad-spectrum protection and inhibit UVA.

The experimental results were found through the ultraviolet absorption spectrum of pure TiO2 and nano ZnO/TiO2 composite particles: at the same concentration, the ultraviolet transmittance of the system containing nano-TiO2 in the 280 ~ 322nm band is only 1%, and the ultraviolet transmittance in the 322 ~ 351nm band is only 1%. The transmittance is 1%~15%, the ultraviolet transmittance in the 351~400nm band is 15%~46%, and its ultraviolet transmittance in the 322~400nm band shows a linear upward trend; while the ultraviolet transmittance of nano-ZnO/TiO2 composite particles in the range of 280-351nm band is always 15%, and the transmittance in the 351 ~ 400nm band is only 15%-18%, the increase in ultraviolet transmittance is not significant.

It can be seen that the UV shielding performance of nano-TiO2 below 351nm is higher than that of nano-ZnO/TiO2, while above 351nm, the UV-shielding performance of nano-ZnO/TiO2 is much higher than nano-TiO2. Although the absorption of nano-ZnO/TiO2 in the UVB region is not as good as that of nano TiO2, its blocking effect on long-wave UVA is better than that of nano-TiO2. It can also be seen that the ultraviolet transmittance of the composite particles in the entire UVB and UVA bands is very small, always below 15%, knowing that this composite particle has a strong ability to shield ultraviolet rays.

 

To sum up, nano zinc oxide and nano titanium dioxide play an important role in the field of UV resistance. Their excellent performance and wide application make them key ingredients in protective products, providing effective protection for people’s health and safety.

Nano titanium oxide and silicon oxide are used for anti -wrinkle fabric treatment

Nano oxides have many amazing properties and are widely used in the textile fields such as antibacterial, deodorizing, and anti -ultraviolet rays, etc functioned textiles. Similarly, nano oxide configuration has also had a positive impact. Add nano titanium dioxide or nano silicon oxide(sio2 hydrophobic or hydrophilic) to the traditional system, to form nano-oxide anti-wrinkle tidal liquids at high speed, and anti -wrinkle arrangement of fabrics.

 

Nano material is a new type of functional material that has a large surface area, many surface activity centers, and strong adsorption capacity. In recent years, the study of nano  titanium dioxide has been started in China. The addition of nano titanium dioxide effectively improves the anti -wrinkle effect of cotton fabrics, and at the same time greatly improves the strength of the fabric. When the content of nano -titanium dioxide is 0.1g/L, the anti -wrinkle performance and improvement of the fabric will be the best.

 

Real silk fabric has excellent hanging, soft luster, and special silk feeling, especially its good comfort and health effects. However, the silk fabric is easy to wrinkle when washing or wetting. In order to improve the rebound performance of real silk, many studies have been conducted at home and abroad. Studies have shown that nano -silicon oxide has many activity points , and its reaction activity is better than nano -titanium dioxide. On the surface of the experiment, the Malaysid Anid Anid anhydride anti -wrinkles can be used as a catalyst. In addition, the best process conditions for nano -silicon oxide as the anti -wrinkle system are: 2g/(50ml) of the Malay acid anhydride concentration, and the baking temperature of the roasting temperature It is 150C. This is realistic and economic value for improving the grade of textiles.

 

Apply unique function of nano powders to develop safe and efficient nano materials and used in textiles has great market prospects. The promotion and application of such technology is expected to give new economic growth points for textiles, medical and health materials, and health care products.

 

Application of TiO2 Nanotubes in Denitrification Field

TiO2 nanotubes have a high specific surface area (greater than 300m2/g). The specific surface area of ​​the catalyst has an important influence on the catalytic performance, so TiO2 nanotubes were used as the denitration catalyst carrier, and the manganese oxide/TiO2 nanotube denitration catalyst was prepared by loading manganese oxide by the equal impregnation method. The catalyst showed good low temperature denitration. performance, especially in the temperature range of 100-220 °C, the denitration activity is almost 100%.

Manganese oxide has relatively high catalytic activity in low-temperature denitration (electrons on 3D orbitals are very easy to migrate). Using TiO2 nanotubes with high specific surface as a carrier can improve the dispersion of manganese oxide and promote more catalytically active sites. At the same time, the mass transfer process of the reaction is improved; on the other hand, TiO2 nanotubes have strong anti-sulfur poisoning ability. In addition, the active sites of amorphous manganese oxide in the catalyst were uniformly dispersed on the surface of the carrier and the increase of Lewis acid content jointly promoted the improvement of catalyst performance.

The application of TiO2 nanotubes with large specific surface area in the catalytic reaction of low-temperature denitration is of great significance to expand the field of denitration.

Nano Silica Coating, Nano Titanium Dioxide Coating

Part of the bus use a transparent glass wall insulating glass coating, which is composed of nanoscale semiconductor material that allows interior cool. Such coatings and high-tech sound, that what constitutes nano-coating paint it? In general, the nano-coating must meet two conditions: First, the coating has at least one phase of the particle size range of 1-100 nanometers in diameter, and secondly, to make the presence of nano-coatings have significantly improved the performance or with new features.

Nano-silica coating: silica architectural coatings non-hierarchical, thixotropic, anti-sagging, good construction performance, and to a large extent improved the stain resistance, excellent self-cleaning properties and adhesion.Capable of forming a network structure of nano silica coating when dry, the coating can improve the degree of finish and aging vehicles, ships and vessels.

Nano-titanium dioxide coating: titanium dioxide paint architectural coatings can improve weatherproofing to a new level.The use of nano-titanium dioxide photocatalytic oxidation technology made the atmosphere purification paint, air purification effect of NO is good, but can also degrade other atmospheric pollutants such as halogenated hydrocarbons, sulfur compounds, aldehydes, polycyclic aromatic hydrocarbons .Nano-titanium dioxide photocatalytic composite application process is simple and low cost.

Nano calcium titanate coating: calcium titanate is an excellent filler and a white filler, with cheap, abundant resources, good color, high-grade characteristics.Research shows that nano calcium carbonate-filled paint, its flexibility, hardness, leveling and gloss have a more substantial increase.

Silver nano-titanium dioxide coating:Titanium dioxide under ultraviolet light is weak antibacterial effect is weak, you can indicate precious metal deposition to be modified in order to improve the photocatalytic bactericidal activity, and has excellent bactericidal properties of silver itself, will combine the two, makes titanium dioxide antibacterial performance pole greatly improved.By thermal deposition on the surface of titanium dioxide load a certain amount of silver can improve the photocatalytic antibacterial properties of the particles

 

Related article: Ceramic Additives Aluminum Oxide Nanopowders