The Importance of Nano ZrO2 on New Energy Hydrogen Production

Hydrogen energy is a kind of secondary energy with rich sources, green, low-carbon and wide application. It can help the large-scale consumption of renewable energy, realize large-scale peak regulation and cross-seasonal and cross-regional energy storage, and accelerate the low-carbon development in industry, construction, transportation and other fields.In 1970s, as an alternative energy source, hydrogen energy attracted people’s attention. At that time, the Middle East War triggered the global oil crisis. In order to get rid of the dependence on imported oil, the United States put forward the concept of “hydrogen economy” for the first time, believing that hydrogen could replace oil as the main energy source to support global transportation in the future. In the following decades, hydrogen energy has been developing. So far, the countries taking up 75% of the global economy have introduced hydrogen energy development policies to actively promote the development of hydrogen energy. Among various hydrogen production materials, nano ZrO2(HW-U702) has attracted the attention of scientists.

 

Nano ZrO2 has large specific surface area, high chemical inertness and catalytic activity, which makes ZrO2 Zirconium Oxide Nanopowder an ideal new energy catalyst for hydrogen production. First, nano ZrO2 promotes the decomposition reaction of water molecules by increasing the decomposition potential of water, producing hydrogen and oxygen. Secondly, nano ZrO2 can effectively inhibit the oxidation reaction in the process of hydrogen production, thus improving the production of hydrogen and the purity of the product.

 

Experiment data shows that nano ZrO2 catalyst can achieve efficient water decomposition reaction under mild conditions and produce high purity hydrogen gas. In addition, due to the abundant hydroxyl groups and oxygen vacancies on the surface of nano ZrO2, these functional groups will adsorb water molecules and decompose them into hydrogen and oxygen, and reduce the byproduct generation in the reaction.

 

The stability and lifetime of the nano ZrO2 catalysts are also of concern. Compared with traditional precious metal catalysts, nano ZrO2 catalyst is more stable and have a longer life. At the same time, the preparation cost of nano ZrO2 catalyst is lower, and the performance can be improved by adjusting the structure and form of nano ZrO2 catalyst, so as to further improve its application in new energy hydrogen production.

 

In general, nano ZrO2 has a wide application prospect in the field of new energy hydrogen production. With the increasing demand for hydrogen energy, we believe that nano ZrO2 catalysts will make greater progress in the future.

 

Hwnanomaterial is a professional manufacturer of nano precious metal powders and their oxides, with reliable and stable product quality and excellent price. Hongwu Nano supplies ZrO2 nanopowder. Welcome to contact us for further information.

Introduction of gas sensing materials and application of nano tin oxide for gas sensors

A gas-sensitive material is a material that is very sensitive to a certain gas in a certain environment, generally a certain type of metal oxide, which is semiconductive by doping or non-stoichiometric changes, and its resistance changes with the changing atmosphere. Different types of gas-sensitive materials are particularly sensitive to one or several gases, and their resistance will change regularly with the concentration (partial pressure) of the gas, and their detection sensitivity is in the order of one millionth, while some individuals can reach the order of one billionth, far exceeding the olfactory perception of animals, so known as “electronic nose”.

 

A sensor is a detection device that can sense the measured information, and can transform the sensed information into electrical signals or other required forms of information output according to certain rules, so as to meet the requirements of information transmission, processing, storage, display, recorde and control requirements. A gas sensor is a sensor that senses the physicochemical properties of specific components contained in a gas and converts it into an appropriate electrical signal to detect the type and concentration of the gas. Semiconductor metal oxides such as SnO2, ZnO, Fe2O3 have been widely used as gas-sensing materials, and In2O3 as a new gas-sensing material has also attracted the attention of researchers.

 

With the continuous development of science and technology,  SnO2 Tin Oxide Nanopowder, as a special and important industrial raw material with various uses, has been continuously expanded in its use and dosage. The application of materials, etc. has shown the actual and potential huge market as gas sensitive, light, white conductive, nano composite photocatalytic materials, etc. Therefore, it is of great significance to find a preparation method with simple process equipment, low cost, high product yield and stable performance.

 

Nano tin dioxide SnO2 is the earliest and most widely used gas-sensing material. Because tin oxide nano has high gas-sensitivity to various combustible gases, it is widely used in the detection and alarm of combustible gases. The combustible gas sensor designed and manufactured with it has the characteristics of high sensitivity, large output signal, high impedance to toxic gas, long life and low cost. Taking nano tin oxide as the matrix material and incorporating appropriate catalysts or additives, a tin oxide gas sensor with selective sensitivity to alcohol, hydrogen, hydrogen sulfide, carbon monoxide and methane can also be prepared.

 

Since the gas-sensing mechanism of tin oxide is surface-controlled, the gas sensitivity is related to the specific surface area of ​​the material. Generally, the larger the specific surface area, the higher the gas sensitivity. Therefore, nanometerization and thin filmization of tin oxide gas-sensitive materials have become two ways to improve the sensitivity ratio of tin oxide gas.

 

In recent years, many materials science and electronics workers have joined this field one after another, dedicated to the research on the adsorption characteristics and detection mechanism of SnO2 gas-sensitive materials, and their products have also penetrated into various fields of petrochemical industry and household civil use. Used as a gas sensor, tin dioxide has many properties superior to other materials, such as higher sensitivity and lower operating temperature. In the past, there have been many studies on sintered and membrane sensors, which are currently widely used for the detection of toxic gases and flammable gases. However, this kind of gas sensor has poor stability and selectivity, long response time and recovery time, unsatisfactory repeatability of the device, and is not conducive to integration and multi-functionality. Nanotechnology can be used to make a large surface area thin-film and powder sensors are used to miniaturize and integrate components, improve sensitivity, and shorten response and recovery time. On the other hand, the development of highly selective sensors requires the use of silicon-based microelectronics technology, and thin-film technology is the most suitable method to achieve this goal. Another method to modify the traditional gas sensor is to dope pure tin oxide with various elements and compounds to reduce the working temperature and improve the sensitivity and selectivity.

 

Currently, Hongwu Nano has successfully produced more fine-grained nanometer tin dioxide, of which size reach to 10nm, in good shape, narrow distribution.https://www.hwnanomaterial.com

Nanomaterials in rubber industry application

The development of the rubber industry is closely related to the use of nanomaterials. Rubber materials in the 21st century are developing towards high performance and functionalization. Usually, the composite obtained by adding nano powder into the rubber matrix is nano-rubber. The application direction of nano-materials in rubber can be summarized as two aspects: improving mechanical properties and providing some special functions (such as anti-aging, gas barrier and antibacterial).

The common nano powders used for rubber reinforcement and more special functions are mainly oxides nanoparticles, including zinc oxide nanoparticles, alumina nanoparticles, titanium dioxide nanoparticles and silica nanoparticles. Also there are other nanomaterials such as carbon nanotubes, silicon nitride nanoparticles, nano graphene, nano diamond, etc.

 

  1. The reinforcing effect of nanomaterials on rubber

The most used and most common reinforcing agent is nano sized silica (SiO2 nanoparticles). The application results of SiO2 in tire production are more reflected in the substantial improvement of the basic performance of tires.

Multi-walled carbon nanotubes (MWCNTs) can greatly improve the mechanical properties of composite materials due to their ultra-high strength, great toughness, and unique electrical and thermal conductivity. It is much better than carbon black in terms of wear and abrasion performance, which is beneficial to the development of low-rolling tire tread compounds.

 

  1. Nanomaterials can improve the vulcanization activity of rubber

Zinc oxide (ZnO) is an essential additive in the rubber and tire industries, and can be used as a vulcanization activator and reinforcing agent for natural rubber, synthetic rubber and latex, as well as a colorant. When nano zinc oxide is used as a vulcanization activator, compared with ordinary zinc oxide, the dosage can be greatly reduced. In the formulation of rubber shoes, active nano zinc oxide is an excellent inorganic active agent and vulcanization accelerator, which can significantly improve the performance of rubber shoes and prolong its service life. In addition, it can also be used as a sterilant, which can effectively inhibit the reproduction of bacteria. It is also a good UV shielding agent and anti-aging.

 

  1. Nanomaterials can improve the heat resistance of rubber

Nano silicon nitride (Si3N4) is a gray-white high-melting-point crystalline powder, which is a covalent bond compound, and the combination is very stable. It has high chemical stability, high temperature resistance and good wear resistance. Evenly dispersing it into the rubber matrix can significantly improve the service life of heat-resistant rubber products under dynamic conditions.

 

  1. Nanomaterials can be used to produce special thermally conductive tires

Graphene conductive tires can not only meet the high performance requirements of ordinary cars, but also can be widely used in inflammable and explosive goods transport vehicles, special vehicles for electronic equipment, special vehicles for military and police, etc.

Application of Nano-materials in Plastic Modification

Organic/inorganic nanocomposites formed by inorganic fillers dispersed in a general plastic matrix with nano size are called nanoplastics. In nanocomposites, nanoplastics have excellent properties such as high strength, heat resistance, high barrier properties, flame retardancy and excellent processability because of the nano size effect, large specific surface area and strong interfacial bonding of the dispersed phase, which is a new high-tech new material.

Application of nano materials in plastic modification:

(1) Anti-aging properties of reinforced plastics
The anti-aging performance of polymer directly affects its service life and working environment, especially for agricultural plastics and plastic building materials, which is an indicator that requires high attention. The ultraviolet wavelength in sunlight is 200~400nm, and the ultraviolet light in the 280~400nm band can break the polymer molecular chain, and never make the material age. Nano oxides powder, such as nano alumina(Al2O3), titanium dioxide(TiO2), silicon dioxide(SiO2), etc., have good absorption characteristics for infrared and microwave. Proper mixing of nano-SiO2 and TiO2 can absorb a large amount of ultraviolet rays, thereby making the material anti-aging.

(2) Improve the processing performance of plastics
Some high polymers, such as ultra-high molecular weight polyethylene with a viscosity average molecular weight of more than 150, have excellent comprehensive performance, but due to their extremely high viscosity, it is difficult to form and process, thus limiting their popularization and use. Taking advantage of the small friction coefficient between the layers of layered silicate sheets, the ultra-high molecular weight polyethylene and layered silicate are fully mixed to make nano rare earth / ultra-high molecular weight polyethylene composite material, which can effectively reduce the ultra-high molecular weight polyethylene. The entanglement of ethylene molecular chains reduces the viscosity and plays a good lubricating role, thus greatly improving its processing performance.

(3) Improve the toughness and strength of plastics
The emergence of nano materials provides a new method and approach for the enhancement and toughening of plastics. Small particle size dispersed phase has relatively few surface defects and more unpaired atoms. The ratio of the number of atoms on the surface to the total number of atoms increases sharply with the decrease of the particle size. The crystal field environment and binding energy of the surface atoms are different from those of the internal atoms, and they have great chemical activity. The micronization of the crystal field and the increase of active surface atoms greatly increase the surface energy, so it can be closely combined with the polymer substrate and has good compatibility. When subjected to external force, the ions are not easily separated from the substrate, and can better transmit the external stress. At the same time, under the interaction of the stress field, more micro-cracks and plastic deformation will be generated inside the material, which can cause the substrate to yield and consume a large amount of impact energy, thereby achieving the purpose of strengthening and toughening at the same time. Commonly used nanomaterials include nano silicon carbide(SiC), silicon carbide whiskers(SiC-W), nano aluminum oxide(Al2O3), multi-walled carbon nanotubes(MWCNTs), etc.

(4) The addition of nanomaterials enables the functionalization of metal nanoparticles have heterogeneous nucleation, which can induce the formation of certain crystal forms that impart toughness to the material. Polypropylene was filled with low melting point metal nanoparticles, and it was found that it can act as a conductive channel and strengthen and toughen the polypropylene. At the same time, its low melting point also improves the processing performance of the composite material.

Nanomaterials have been used to produce different types of leather

Leather finishing is a very important operation in the manufacture of leather, in which a variety of different chemicals are used. The introduction of nano-materials in leather finishing has revolutionized the leather industry, and nanomaterials have been used to produce a variety of different types of leather to meet the diverse needs of consumers. The purpose of this study is to combine leather science and nanotechnology to achieve superior performance with superior characteristics. TiO2 nanoparticles are widely used in many fields, such as antibacterial agents, super-hydrophilic materials, water vapor permeable materials, solar cells, ultraviolet absorbers, catalytic materials, plastics, fibers, controlled release, pigments, thermal insulation materials, coating Layer adhesive, self-cleaning coating, scratch resistant anti-wear material, etc. The use of nanomaterials in leather finishing has a strong durability that helps the leather withstand the test of time.

 

(1) TiO2 nanoparticles show better adhesion after coating on leather. The improvement in adhesion is due to the fact that the TiO2 nanoparticles used in the finishing formulation promote the reactivity of the binder, other finishing aids and the leather matrix due to the greater specific surface area.

(2) Adhesion is also related to the interfacial force. The polar molecules of the binder are in closer contact with the nano-TiO2 particles, promoting interatomic and intermolecular forces, resulting in better adhesion, strength, and diffusivity.

(3) The very large specific surface area of the nano TiO2 particles contributes to the adsorption of other coating materials and can increase the reaction performance. And the nano-TiO2 particles can enter the gap between the leather fibers to have a strong interaction with the leather fibers to improve the adhesion performance.

(4) The use of TiO2 nanoparticles in the finishing formulation gives the leather better physical properties, good sensory properties (the coating gloss is medium with nano-TiO2, the leather gloss is higher without using TiO2 nanoparticles) and better Chemical properties. Nano-TiO2 provides better hiding performance, filling performance and bonding performance (the best nano-TiO2 dosage is 0.1~2 g/L).  Select nanoparticle companies from https://www.hwnanomaterial.com