Antibacterial Mechanism of Nano Silver Powder–Most Cost-Effective Antibacterial Material

In nature, harmful bacteria, fungi, viruses and other microorganisms are widely distributed, and they grow, multiply or mutate under certain conditions, which are the main reasons for human infections and diseases. Therefore, the development and application of antibacterial materials and antibacterial products have attracted attention from all over the world. Compared with organic antibacterial agents, inorganic antibacterial agents have the characteristics of high safety, good heat resistance and antibacterial durability; in addition, with the in-depth research of nanotechnology, nanoparticles and nanomaterials have become one of the research hotspots in the field of materials science. , Studies have shown that the antibacterial performance will be greatly enhanced after the nanometerization of the antibacterial agent. Therefore, nano-scale inorganic antibacterial agents have a lot of room for development.

 

Compared with ordinary silver powder, nano-silver power has the unique surface effect, volume effect, quantum size effect and macro-quantum tunneling effect of nano-materials. It has a strong inhibitory and killing effect on dozens of pathogenic microorganisms such as Escherichia coli, Neisseria gonorrhoeae, Chlamydia trachomatis, and will not produce drug resistance. Animal experiments show that even if the amount of this nano-silver antibacterial powder reaches several thousand times the standard dose, the tested animals have no signs of poisoning. At the same time, it also promotes the repair of damaged epithelial cells. It is worth mentioning that the antibacterial effect of this product when exposed to water is increasingly enhanced, which is more conducive to the treatment of diseases.

 

The main application areas of nano silver antibacterial include environmental protection, textiles and clothing, fruit preservation, food hygiene, fibers (fabrics, finished products), information industry, ecological environment, daily necessities, etc. Its detailed applications: cotton, linen, silk, polyester, acrylic, spandex, viscose fiber, protein fiber, finished fabrics, clothing, bedding, daily textiles, toys, etc., aquaculture, gardening facilities, soil improvement, building materials, Decorative materials, detergents, glassware, packaging paper products, paper for special industries, deodorants, antibacterial gels for external use in medicine, and plastic products.

 

Antibacterial mechanism of inorganic nano silver antibacterial agent

The biggest difference between nano-silver inorganic antibacterial agents and organic antibacterial agents is that the use of organic antibacterial agents can easily make bacteria resistant, and improper use can cause harm to the human body, while the use of nano-silver inorganic antibacterial agents will not cause bacteria at any time Produce drug resistance and have antibacterial durability. The antibacterial mechanism generally has the following aspects:

 

  1. The effective ingredients in antibacterial fibers act on cell membrane proteins. It can directly destroy the bacterial cell membrane and cause the cell contents to ooze out. Nano silver and organic antibacterial agents are adsorbed on the cell membrane, hindering bacteria and other microorganisms from absorbing amino acids, uracil and other nutrients necessary for growth, thereby inhibiting their growth.
  2. The far infrared rays emitted from the surface of the antibacterial fabric have a certain wavelength range, which can inhibit the activity of bacteria and cause the death of bacteria.
  3. The surface catalysis of nano-silver affects the normal metabolism and reproduction of bacteria, leading to the death of bacteria.

 

Anti-microbial category

1) Common pathogenic bacteria: Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Salmonella, etc.

2) Common pathogenic fungi: pathogenic molds such as Aspergillus flavus, Aspergillus nidulans, Penicillium citrinum, etc.; yeasts such as Candida albicans, etc.

3) Common molds that pollute the environment: Aspergillus niger, Aureobasidium pullulans, Paecilomyces variabilis and Trichoderma viride, etc. https://www.hwnanomaterial.com

Nanomaterials in rubber industry application

The development of the rubber industry is closely related to the use of nanomaterials. Rubber materials in the 21st century are developing towards high performance and functionalization. Usually, the composite obtained by adding nano powder into the rubber matrix is nano-rubber. The application direction of nano-materials in rubber can be summarized as two aspects: improving mechanical properties and providing some special functions (such as anti-aging, gas barrier and antibacterial).

The common nano powders used for rubber reinforcement and more special functions are mainly oxides nanoparticles, including zinc oxide nanoparticles, alumina nanoparticles, titanium dioxide nanoparticles and silica nanoparticles. Also there are other nanomaterials such as carbon nanotubes, silicon nitride nanoparticles, nano graphene, nano diamond, etc.

 

  1. The reinforcing effect of nanomaterials on rubber

The most used and most common reinforcing agent is nano sized silica (SiO2 nanoparticles). The application results of SiO2 in tire production are more reflected in the substantial improvement of the basic performance of tires.

Multi-walled carbon nanotubes (MWCNTs) can greatly improve the mechanical properties of composite materials due to their ultra-high strength, great toughness, and unique electrical and thermal conductivity. It is much better than carbon black in terms of wear and abrasion performance, which is beneficial to the development of low-rolling tire tread compounds.

 

  1. Nanomaterials can improve the vulcanization activity of rubber

Zinc oxide (ZnO) is an essential additive in the rubber and tire industries, and can be used as a vulcanization activator and reinforcing agent for natural rubber, synthetic rubber and latex, as well as a colorant. When nano zinc oxide is used as a vulcanization activator, compared with ordinary zinc oxide, the dosage can be greatly reduced. In the formulation of rubber shoes, active nano zinc oxide is an excellent inorganic active agent and vulcanization accelerator, which can significantly improve the performance of rubber shoes and prolong its service life. In addition, it can also be used as a sterilant, which can effectively inhibit the reproduction of bacteria. It is also a good UV shielding agent and anti-aging.

 

  1. Nanomaterials can improve the heat resistance of rubber

Nano silicon nitride (Si3N4) is a gray-white high-melting-point crystalline powder, which is a covalent bond compound, and the combination is very stable. It has high chemical stability, high temperature resistance and good wear resistance. Evenly dispersing it into the rubber matrix can significantly improve the service life of heat-resistant rubber products under dynamic conditions.

 

  1. Nanomaterials can be used to produce special thermally conductive tires

Graphene conductive tires can not only meet the high performance requirements of ordinary cars, but also can be widely used in inflammable and explosive goods transport vehicles, special vehicles for electronic equipment, special vehicles for military and police, etc.

Modification of Epoxy Resin by Silicon Carbide Whiskers (SiC-W)

Because of the small diameter, large aspect ratio, high strength, high modulus and excellent heat resistance, silicon carbide whiskers play a unique role in the modification of polymer materials. Epoxy resin has been widely used in various fields of the national economy because of its high strength, good adhesion, good thermal stability, high strength, and small shrinkage. SiC whisker modified epoxy resin can further improve its mechanical properties (strengthening and toughening), friction and wear resistance and antistatic properties.

 

Epoxy resin (EP) is one of the most widely used thermosetting polymer materials. It has excellent adhesion, thermal stability, electrical insulation, chemical resistance, high strength, small shrinkage, and low price and it’s widely used in various fields such as coatings, adhesives, light industry, construction, machinery, aerospace, electronic and electrical insulation materials, and advanced composite materials. However, due to the shortcomings of epoxy resin cured products such as high brittleness, low impact strength, easy cracking, and poor antistatic performance, its further applications are limited.

 

Epoxy resin glue is prepared by epoxy resin plus curing agent, filler and so on. It has the characteristics of high bonding strength, high hardness, good rigidity, acid, alkali, oil and organic solution resistance, and small curing shrinkage. At present, the bonding strength of epoxy adhesive is relatively high, but there are still some deficiencies in the bonding of some high-strength structures, and the bonding strength needs to be further improved.

 

Whiskers are fibers with extremely small diameters grown in the form of single crystals under special conditions. They have a highly ordered atomic arrangement structure, so they can approach the theoretical strength of valence bonds between atoms, and have great potential for strengthening epoxy adhesives. Many research results show that filling whiskers into epoxy resin matrix can effectively solve these shortcomings and greatly improve the comprehensive performance of epoxy resin.

 

Silicon carbide whisker is a cubic whisker whose crystal form is the same as that of diamond. It is currently the whisker with the highest hardness, the largest modulus, and the best heat resistance among whiskers. The crystal form is β-type, which has higher hardness, better comprehensive properties such as toughness and thermal conductivity, and is also one of the best reinforcing and toughening materials. It can significantly improve the toughness, flexural strength, hardness, wear resistance, and high temperature resistance, oxidation resistance, thermal conductivity, structural stability, thermal shock resistance, etc..

 

The silicon carbide whiskers treated with the coupling agent can be well and stably dispersed in the matrix, the whiskers are well infiltrated by the matrix, and the interface bonding strength is increased. Through this interface, the matrix and whiskers are connected as a whole. When the matrix is ​​subjected to external force, the stress can be uniformly transmitted through this interface and absorb a large amount of energy. On the one hand, when a crack appears in the matrix, the whiskers bridge the surface of the broken crack, which can hinder the further development of the crack; on the other hand, if the crack encounters silicon carbide powders, if it wants to develop further, the crystal must be destroyed or removed. Whiskers have high strength and high modulus, and it takes a lot of energy to destroy or pull out the whiskers, and when the crack bypasses the whiskers, it develops further and causes more microcracks. And because the whiskers have a relatively large L/D, more energy needs to be absorbed, thereby significantly increasing the strength and toughness of the EP matrix.

Dispersion method of nano silver powder

Because of the volume effect, surface effect, quantum size and other effects unique to nanomaterials, nano silver powder has many special uses. In the field of antibacterial medicine, silver nano particles are more likely to be in close contact with pathogenic microorganisms, thereby exerting greater biological effects. It has the characteristics of wide antibacterial range and long duration, and is a new type of nano material with broad application prospects.

 

Nanopowders have small particle size and high surface activity, and it is easy to agglomerate between particles. Ag nano powder is no exception. The agglomeration will affect the development and application of nano Ag particle and its derivatives. The key technology is solve the agglomeration and obtain a stable dispersion. In order to obtain nano silver materials that are compatible with the process formula and are easy to disperse, please refer to the following points:

 

  1. If the user is willing to provide the application details, Hongwu Nano can modify the silver nanowires in advance to improve the dispersion of silver accordingly.
  2. In general, the addition of surfactants and mechanical dispersion methods should be combined to achieve good dispersion effects.
  3. Commonly used mechanical dispersing equipments include: generally used in low viscosity systems such as water and organic solutions, high-speed dispersing machines and ultrasonic equipment can be selected. High-viscosity system (paste) can be selected pulp mill, surface mill, high-speed dispersion disc, ball mill, etc..
  4. The dried silver powder can be depolymerized and surface modified with a supersonic jet mill.
  5. Commonly used surfactants: polymer surfactants such as PVP, gum arabic, polyethylene glycol, polyvinyl alcohol, etc. These dispersants are recommended for water-based systems. Surfactants can be used in combination and can significantly improve the dispersion effect.
  6. Based on years of silver powder production experience and users’ feedback, Hongwu Nano has summed up practical nano silver powder dispersion methods and techniques. Currently we can provide untreated nanosilver powder, surface-modified nano-silver powder, nano-silver water dispersion(colloidalAg), etc. Tailor-made nano-silver series products according to customer requirements.

Summary of the various applications of nano graphene on mobile phones

Graphene nanopowder  is a two-dimensional material. Carbon atoms are arranged in a hexagonal shape and are connected to each other to form a carbon molecule. Its structure is very stable. As the number of connected carbon atoms increases, the two-dimensional carbon molecule plane keeps expanding, and so does the molecule. A single layer of graphene nanoparticles is only one carbon atom thick, that is, 0.335nm, which is equivalent to 1/200,000 of the thickness of a hair. There will be nearly 1.5 million layers of graphene in 1 mm thick graphite. Graphene is the thinnest known material and has the advantages of extremely high specific surface area, superior electrical conductivity and strength. The existence of the above advantages is that it has a good market prospect. Various applications of nano graphene on mobile phones are as follows:

 

Screen

Graphene screens can use force sensors, bringing a new dimension to touchscreen technology. Furthermore, thanks to graphene’s high toughness, these new properties can be integrated into flexible screens, which are useful for wearable technology.

 

Phone case

Graphene is a high-strength material. Mixed with resins and plastics, or even just as a coating, graphene could be used to make safer helmets, stronger aircraft parts and more durable building materials. Combining graphene with a phone’s case could make it even stronger, and we might never have to worry about it falling off again!

 

Antennas and Communications

Graphene could boost optical data communications to unprecedented rates while reducing energy consumption and transmission errors. By 2020, the graphene flagship aims to link more than 400 gigabits of data per second. Graphene can also serve as the basis for flexible near-field communication (NFC) antennas, enabling new technologies such as electronic banknotes or smart wallets.

 

Sensors

Graphene sensors have many applications: linking to health sensors throughout our bodies, monitoring high-risk infections, oxygen and sugar levels, correcting our posture, and even helping us track neurological pathologies. Sensors can also detect and analyze our environment.

 

Processors and Electronics

Graphene’s electronic properties allow us to make faster and more reliable phone accessories. Graphene has high strength, conductivity, yet thin — just one atom thick, enabling thinner and faster microprocessors for smart products and the Internet of Things. Graphene and related materials are so flexible that devices can be integrated into textiles or even ‘stickers’ directly on the skin.

 

Battery

Graphene can be used to improve the capacity, efficiency and stability of batteries. Graphene batteries can have higher energy storage and better performance in terms of service life and charging time. Graphene and related materials can also be used to improve the performance of other energy storage solutions, such as supercapacitors. Another role of graphene in graphene-based lithium-ion batteries is to improve heat dissipation.

 

Headphones/Speakers

Graphene could make headphones and speakers more energy-efficient and lighter, while producing better sound. As membranes become lighter, they are often too FL releasable and generate unnecessary vibration and noise. Graphene is flexible and strong, so distortion is reduced and people can enjoy their favorite music sources with unprecedented clarity!

Carbon nanotubes used in polymer composites

Because carbon nanotubes have a similar structure to polymer materials (epoxy resin, polystyrene, polymethyl methacrylate, polyacetylene, nylon and polyurethane, etc.), it is easy to form an ideal interfacial bonding force when mixed, resulting in improved performance. The composite material exhibits excellent strength, wear resistance, electrical conductivity, antistatic properties and other properties that the polymer itself does not have.

1. The acidified carbon nanotubes were compounded with high-density polyethylene (HDPE), and the oriented carbon nanotubes/HDPE composites were prepared by mechanical blending method, which improved the yield strength and tensile strength of the composites. modulus.

2. The carbon nanotube/polytetrafluoroethylene composite material prepared by the customer has a reduced coefficient of friction and improved wear resistance.

3. A company uses carbon nanotubes to reinforced polyurethane composite materials, with a strength/weight ratio of more than 50%, to manufacture larger, stronger and lighter wind turbine blades, so that the power generation of wind turbines can reach more than 1.5MW.

4. Poly(3-octylthiophene)/carbon nanotube composites, the electrical conductivity is improved by 5 orders of magnitude.

5. Adding 8.5wt% single-walled carbon nanotubes to polystyrene-isoprene reduces the resistivity by 10 orders of magnitude.

6. Adding 2-3% of multi-walled carbon nanotubes to the plastic can greatly improve the electrical conductivity; dispersing carbon nanotubes in an epoxy resin, a small amount of addition can produce higher electrical conductivity. Adding 10% carbon nanotubes to engineering plastics such as polycarbonate and polyamide, the conductivity is much higher than other conductive fillers of the same kind. Based on this, the demand for carbon nanotubes in the plastics industry is increasing day by day. china professional carbon nanotube supplier www.hwnanomaterial.com.

Application of nano materials in the coating field

The nano raw materials used in the coating field are mainly divided into the following categories according to their functions: Photocatalytic nano-coatings, weather-resistant nano-coatings, high-mechanical properties nano-coatings, transparent heat-insulating nano-coatings, and conductive nano-coatings.

1.Photocatalytic Nanocoatings
Using the photocatalytic properties of Titanium dioxide nanoparticles, scientists have already carried out the protection of historical building relics. The researchers took advantage of the wide catalytic properties of nano-TIO2 that most of the Ca(OH)2 in the layer reacted with SO2 oxidized by OH to form CaSO4, which prevented the further erosion of buildings by SO2 and CO2 in the air, and effectively protected historical buildings. remains. In the application of photocatalytic decontamination and sterilization, CUxO/TIO2 nanocomposite products that can absorb visible light have been applied indoors.

2. Weather resistant nano coating
The high-energy damage of ultraviolet rays is the main culprit for the degradation and aging of organic matter in coatings. The small size effect of nano materials makes it have a strong absorption effect on ultraviolet rays, and the particle size of nanoparticles is much smaller than the wavelength of visible light, which ensures that the layer has good transparency. At present, the most widely used weather-resistant nano materials are nano-TIO2, ZNO, SIO2. Among them, TIO2 has excellent functions of absorbing, reflecting and scattering ultraviolet rays, so it is an ideal UV protectant. ZNO has good absorption and scattering effect on long-wave ultraviolet. SIO2 has extremely strong reflectivity to medium-wave and long-wave ultraviolet rays, and it can play a better shielding effect when added to coatings. Weather-resistant nano-coatings are widely used in building materials, cosmetics and art protection.

3. Nano coating with high mechanical properties
The characteristics of the filler directly determine the function and performance of the coating. The contact area between the nanoparticles and the organic matter in the coating is huge, and the bonding force is strong, which increases the mechanical properties of the organic layer, such as the hardness, impact resistance and wear resistance of the coating.
Research indicates that addition of nano-AL2O3, TIO2, SIO2, ZNO and other particles into coatings can significantly enhance the anti-scratch and wear-resistant properties of the coatings. This is widely used in automotive topcoats, furniture paints, lens complaints and other fields.

4. Transparent heat-insulating nano-coating
Nano metal oxide particles are selective to the solar spectrum and are ideal filler particles for nano coatings. Nano ATO tin antimony oxide, nano ITO indium tin oxide and nano zinc aluminum oxide have good barrier properties for near infrared. Nano TIO2, ZNO, FE2O3, etc. have a good barrier to ultraviolet rays. Evenly dispersing such nano-oxide particles into an organic solution can prepare nano-composite transparent thermal insulation coatings, which has a huge promotion effect on building energy conservation, emission reduction and environmental protection advocated by the state.

5. Conductive Nanocoatings
At present, nanoparticles such as nano-ATO, SNO2, TIO2, ZNO, FE2O3 have been used in electrostatic shielding nanocomposite coatings. The fillers are in contact with each other to form a conductive network, and the carriers move freely in the conductive network.
Another popular conductive material in the market is nano AZO, which is doped with Al2O3 in ZnO, has high temperature resistance, good electrical conductivity, strong high temperature stability and good radiation resistance. The product is a relatively cheap, cost-effective and environmentally friendly.

Summary of the various applications of nano graphene on mobile phones

Graphene is a two-dimensional material. Carbon atoms are arranged in a hexagonal shape and are connected to each other to form a carbon molecule. Its structure is very stable. As the number of connected carbon atoms increases, the two-dimensional carbon molecule plane keeps expanding, and so does the molecule. A single layer of graphene is only one carbon atom thick, that is, 0.335nm, which is equivalent to 1/200,000 of the thickness of a hair. There will be nearly 1.5 million layers of graphene in 1 mm thick graphite. Graphene is the thinnest known material and has the advantages of extremely high specific surface area, superior electrical conductivity and strength. The existence of the above advantages is that it has a good market prospect. Various applications of graphene oxide powder on mobile phones are as follows:

Screen

Graphene screens can use force sensors, bringing a new dimension to touchscreen technology. Furthermore, thanks to graphene’s high toughness, these new properties can be integrated into flexible screens, which are useful for wearable technology.

Phone case

Graphene is a high-strength material. Mixed with resins and plastics, or even just as a coating, graphene could be used to make safer helmets, stronger aircraft parts and more durable building materials. Combining graphene with a phone’s case could make it even stronger, and we might never have to worry about it falling off again!

Antennas and Communications

Graphene could boost optical data communications to unprecedented rates while reducing energy consumption and transmission errors. By 2020, the graphene flagship aims to link more than 400 gigabits of data per second. Graphene can also serve as the basis for flexible near-field communication (NFC) antennas, enabling new technologies such as electronic banknotes or smart wallets.

Sensors

Graphene sensors have many applications: linking to health sensors throughout our bodies, monitoring high-risk infections, oxygen and sugar levels, correcting our posture, and even helping us track neurological pathologies. Sensors can also detect and analyze our environment.

Processors and Electronics

Graphene’s electronic properties allow us to make faster and more reliable phone accessories. Graphene has high strength, conductivity, yet thin — just one atom thick, enabling thinner and faster microprocessors for smart products and the Internet of Things. Graphene and related materials are so flexible that devices can be integrated into textiles or even ‘stickers’ directly on the skin.

Battery

Graphene can be used to improve the capacity, efficiency and stability of batteries. Graphene batteries can have higher energy storage and better performance in terms of service life and charging time. Graphene and related materials can also be used to improve the performance of other energy storage solutions, such as supercapacitors. Another role of graphene in graphene-based lithium-ion batteries is to improve heat dissipation.

Headphones/Speakers

Graphene nanopowder could make headphones and speakers more energy-efficient and lighter, while producing better sound. As membranes become lighter, they are often too FL releasable and generate unnecessary vibration and noise. Graphene is flexible and strong, so distortion is reduced and people can enjoy their favorite music sources with unprecedented clarity!

Graphene oxide for heavy metal pollution control

Heavy metals generally refer to more than 60 elements with a density of more than 4 or 45 elements with a density of more than 5. However, because the toxicity of different heavy metals in water and soil is very different, in the field of environmental science, people usually pay attention to vanadium, chromium and nickel. , cobalt, copper, zinc, cadmium, tin, mercury, lead and other metal ions. Heavy metal ions can accumulate in the human body and lead to poisoning, cancer and damage to the nervous system, so it is particularly important to do a good job of heavy metal pollution control.

Graphene oxide  is a carbon nano material prepared from natural graphite with a structure similar to carbon nanotubes. Compared with the adsorption capacity of activated carbon, carbon nanotubes and graphene materials for low-concentration lead-containing wastewater, the adsorption capacity of graphene oxide for lead is as high as 800 mg/g, which is much higher than that of activated carbon, which is 60 to 120 mg/g. It has extremely strong regeneration capacity, and the adsorption capacity drops only 5 to 10% after repeated adsorption/elution cycles.

Why does graphene oxide have such a strong heavy metal adsorption capacity? There are two reasons: one is that graphene oxide is a two-dimensional nano material with a thickness of one atomic layer, and its specific surface area can theoretically reach 2600 square meters/g, which is the largest among all carbon nano materials; During the preparation process, a large number of active groups such as carboxyl group, carbonyl group, hydroxyl group, epoxy group, etc. are formed on its surface. Therefore, graphene oxide has the most basic elements required for an excellent adsorbent: a sufficiently large specific surface area and a sufficiently high density of surface functional groups.

The use of graphene oxide material can reduce the discharge concentration of lead-containing wastewater in the lead-acid battery industry from the current 100-1000ppb to 1-10ppb, increase the lead recovery rate to 95%-99%, and reduce the total environmental discharge of lead by 90% compared with the existing technology. %. The achievement can be effectively extended to other heavy metal pollution systems such as cadmium, nickel, arsenic, copper, chromium, and radioactive elements, and has considerable economic and social benefits. https://www.hwnanomaterial.com/

Application of Nano-materials in Plastic Modification

Organic/inorganic nanocomposites formed by inorganic fillers dispersed in a general plastic matrix with nano size are called nanoplastics. In nanocomposites, nanoplastics have excellent properties such as high strength, heat resistance, high barrier properties, flame retardancy and excellent processability because of the nano size effect, large specific surface area and strong interfacial bonding of the dispersed phase, which is a new high-tech new material.

Application of nano materials in plastic modification:

(1) Anti-aging properties of reinforced plastics
The anti-aging performance of polymer directly affects its service life and working environment, especially for agricultural plastics and plastic building materials, which is an indicator that requires high attention. The ultraviolet wavelength in sunlight is 200~400nm, and the ultraviolet light in the 280~400nm band can break the polymer molecular chain, and never make the material age. Nano oxides powder, such as nano alumina(Al2O3), titanium dioxide(TiO2), silicon dioxide(SiO2), etc., have good absorption characteristics for infrared and microwave. Proper mixing of nano-SiO2 and TiO2 can absorb a large amount of ultraviolet rays, thereby making the material anti-aging.

(2) Improve the processing performance of plastics
Some high polymers, such as ultra-high molecular weight polyethylene with a viscosity average molecular weight of more than 150, have excellent comprehensive performance, but due to their extremely high viscosity, it is difficult to form and process, thus limiting their popularization and use. Taking advantage of the small friction coefficient between the layers of layered silicate sheets, the ultra-high molecular weight polyethylene and layered silicate are fully mixed to make nano rare earth / ultra-high molecular weight polyethylene composite material, which can effectively reduce the ultra-high molecular weight polyethylene. The entanglement of ethylene molecular chains reduces the viscosity and plays a good lubricating role, thus greatly improving its processing performance.

(3) Improve the toughness and strength of plastics
The emergence of nano materials provides a new method and approach for the enhancement and toughening of plastics. Small particle size dispersed phase has relatively few surface defects and more unpaired atoms. The ratio of the number of atoms on the surface to the total number of atoms increases sharply with the decrease of the particle size. The crystal field environment and binding energy of the surface atoms are different from those of the internal atoms, and they have great chemical activity. The micronization of the crystal field and the increase of active surface atoms greatly increase the surface energy, so it can be closely combined with the polymer substrate and has good compatibility. When subjected to external force, the ions are not easily separated from the substrate, and can better transmit the external stress. At the same time, under the interaction of the stress field, more micro-cracks and plastic deformation will be generated inside the material, which can cause the substrate to yield and consume a large amount of impact energy, thereby achieving the purpose of strengthening and toughening at the same time. Commonly used nanomaterials include nano silicon carbide(SiC), silicon carbide whiskers(SiC-W), nano aluminum oxide(Al2O3), multi-walled carbon nanotubes(MWCNTs), etc.

(4) The addition of nanomaterials enables the functionalization of metal nanoparticles have heterogeneous nucleation, which can induce the formation of certain crystal forms that impart toughness to the material. Polypropylene was filled with low melting point metal nanoparticles, and it was found that it can act as a conductive channel and strengthen and toughen the polypropylene. At the same time, its low melting point also improves the processing performance of the composite material.