A gas-sensitive material is a material that is very sensitive to a certain gas in a certain environment, generally a certain type of metal oxide, which is semiconductive by doping or non-stoichiometric changes, and its resistance changes with the changing atmosphere. Different types of gas-sensitive materials are particularly sensitive to one or several gases, and their resistance will change regularly with the concentration (partial pressure) of the gas, and their detection sensitivity is in the order of one millionth, while some individuals can reach the order of one billionth, far exceeding the olfactory perception of animals, so known as “electronic nose”.
A sensor is a detection device that can sense the measured information, and can transform the sensed information into electrical signals or other required forms of information output according to certain rules, so as to meet the requirements of information transmission, processing, storage, display, recorde and control requirements. A gas sensor is a sensor that senses the physicochemical properties of specific components contained in a gas and converts it into an appropriate electrical signal to detect the type and concentration of the gas. Semiconductor metal oxides such as SnO2, ZnO, Fe2O3 have been widely used as gas-sensing materials, and In2O3 as a new gas-sensing material has also attracted the attention of researchers.
With the continuous development of science and technology, SnO2 Tin Oxide Nanopowder, as a special and important industrial raw material with various uses, has been continuously expanded in its use and dosage. The application of materials, etc. has shown the actual and potential huge market as gas sensitive, light, white conductive, nano composite photocatalytic materials, etc. Therefore, it is of great significance to find a preparation method with simple process equipment, low cost, high product yield and stable performance.
Nano tin dioxide SnO2 is the earliest and most widely used gas-sensing material. Because tin oxide nano has high gas-sensitivity to various combustible gases, it is widely used in the detection and alarm of combustible gases. The combustible gas sensor designed and manufactured with it has the characteristics of high sensitivity, large output signal, high impedance to toxic gas, long life and low cost. Taking nano tin oxide as the matrix material and incorporating appropriate catalysts or additives, a tin oxide gas sensor with selective sensitivity to alcohol, hydrogen, hydrogen sulfide, carbon monoxide and methane can also be prepared.
Since the gas-sensing mechanism of tin oxide is surface-controlled, the gas sensitivity is related to the specific surface area of the material. Generally, the larger the specific surface area, the higher the gas sensitivity. Therefore, nanometerization and thin filmization of tin oxide gas-sensitive materials have become two ways to improve the sensitivity ratio of tin oxide gas.
In recent years, many materials science and electronics workers have joined this field one after another, dedicated to the research on the adsorption characteristics and detection mechanism of SnO2 gas-sensitive materials, and their products have also penetrated into various fields of petrochemical industry and household civil use. Used as a gas sensor, tin dioxide has many properties superior to other materials, such as higher sensitivity and lower operating temperature. In the past, there have been many studies on sintered and membrane sensors, which are currently widely used for the detection of toxic gases and flammable gases. However, this kind of gas sensor has poor stability and selectivity, long response time and recovery time, unsatisfactory repeatability of the device, and is not conducive to integration and multi-functionality. Nanotechnology can be used to make a large surface area thin-film and powder sensors are used to miniaturize and integrate components, improve sensitivity, and shorten response and recovery time. On the other hand, the development of highly selective sensors requires the use of silicon-based microelectronics technology, and thin-film technology is the most suitable method to achieve this goal. Another method to modify the traditional gas sensor is to dope pure tin oxide with various elements and compounds to reduce the working temperature and improve the sensitivity and selectivity.
Currently, Hongwu Nano has successfully produced more fine-grained nanometer tin dioxide, of which size reach to 10nm, in good shape, narrow distribution.https://www.hwnanomaterial.com