Direct Laser Writing of Nanodiamond Films

Synthesis of diamond, a multi-functional material, has been a challenge due to very high activation energy for transforming graphite to diamond, and therefore, has been hindering it from being potentially exploited for novel applications. In this study, we explore a new approach, namely confined pulse laser deposition (CPLD), in which nanosecond laser ablation of graphite within a confinement layer simultaneously activates plasma and effectively confine it to create a favorable condition for nanodiamond formation from graphite.
Nano diamond powder is noteworthy that due to the local high dense confined plasma created by transparent confinement layer, nanodiamond has been formed at laser intensity as low as 3.7 GW/cm2, which corresponds to pressure of 4.4 GPa, much lower than the pressure needed to transform graphite to diamond traditionally. By manipulating the laser conditions, semi-transparent carbon films with good conductivity (several kΩ/Sq) were also obtained by this method. This technique provides a new channel, from confined plasma to solid, to deposit materials that normally need high temperature and high pressure. This technique has several important advantages to allow scalable processing, such as high speed, direct writing without catalyst, selective and flexible processing, low cost without expensive pico/femtosecond laser systems, high temperature/vacuum chambers.
The reaction of nanoscale diamond (ND) powder with an elemental fluorine/hydrogen mixture at temperatures varying from 150 to 470 °C resulted in the high degree of ND surface fluorination yielding a fluoro-nanodiamond with up to 8.6 at. % fluorine content. The fluoro-nanodiamond was used as a precursor for preparation of the series of functionalized nanodiamonds by subsequent reactions with alkyllithium reagents, diamines, and amino acids. The fluoro-nanodiamond and corresponding alkyl-, amino-, and amino acid-nanodiamond derivatives were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transformed infrared (FTIR) and X-ray photoelectron spectroscopy (XPS), and thermal gravimetry-mass spectrometry (TG-MS) measurements. In comparison with the pristine nanodiamond, all functionalized nanodiamonds show an improved solubility in polar organic solvents, e.g., alcohols and THF, and a reduced particle agglomeration.

Single Walled Carbon Nanotubes Suppliers

Carbon nanotubes are playing an important role in the field of nanotechnology. Single walled carbon nanotubes and multiwalled carbon nanotubes are interrelated to each other

The commeon method in preparing of carbon nanotubes is from the solution or nanotubes dispersion. After mixing the organic solvents and water it helps in producing CNTs.. Single-walled nanotubes are likely candidates for miniaturizing electronics. The most basic building block of these systems is the electric wire.

Single-wall carbon nanotubes (SWCNTs) is considered as formation of rolling of a single layer of graphite (called a graphene layer) into a seamless cylinder. A multiwall carbon nanotube (MWCNT) can similarly be considered to be a coaxial assembly of cylinders of SWCNTs. The separation between tubes is about equal to that between the layers in natural graphite. So nanotubes are one-dimensional objects with a well-defined direction along the nanotube axis that is analogous to the in-plane directions of graphite.”

Singlewalled carbon nanotubes, SWCNT, Single walled nanotubes at reinste are produced by HiPCO Method. It is in form of dry powder of Nanotubes bundled in ropes with diameter ~ 0.8 – 1.2 nm and length ~ 100- 1000 nm. SWNTs are an important variety of carbon nanotube because most of their properties change significantly with the (n,m) values, and this dependence is non-monotonic In particular, their band gap can vary from zero to about 2 eV and their electrical conductivity can show metallic or semiconducting behavior.

Using Carbon Nanotubes to Produce Electricity

The researchers of Massachusetts Institute of Technology (MIT) have uncovered a new phenomenon of carbon nanotubes. They found that carbon nanotubes discharge powerful waves of electricity under certain circumstances. MIT team named it as thermopower waves hp pb995a battery. They are pinning their hope on thermopower waves to produce electricity to be utilized in small electrical appliances or maybe in large-scale applications too. This project was funded by the Air Force Office of Scientific Research, and the US National Science Foundation (NSF).

This discharge of electricity from carbon nanotubes is a very rare occurrence. Traditionally we derive electricity from water, sun, wind, coal or heat produced by burning of fossil fuels. The thermopower wave, “opens up a new area of energy research, which is rare,” said Michael Stranowho is MIT’s Charles and Hilda Roddey associate professor of Chemical Engineering. His work was published in scientific journal Nature Materials.

Carbon Nanotubes are submicroscopic structures. They are just billionths of a meter in diameter. Carbon nanotubes resemble honeycombs. For the past twenty years scientists are focusing their energies on carbon nanotubes, graphene sheets and buckeyballs lenovo 3000 v100 battery. They find these three most promising for clean and green energy research. These three substances can be valuable for the medicine, nanotechnology, geoengineering, biology, and for the electronics industry.

Researchers associated with this project find the whole phenomenon quite unusual. They have observed that as the moving pulses of heat pass through the carbon naotubes, electrons also travel along. This movement of electrons is responsible for generation of electric current. Strano says, “There’s something else happening here. We call it electron entrainment since part of the current appears to scale with wave velocity.”

Oxidation Catalysis by Pure Nano gold powder

The historical notion regarding the inability of gold to catalyze reactions has been discarded in view of recent studies, which have clearly demonstrated the high catalytic efficiency of supported nano-gold catalysts. Although nano-Au catalysts are known to catalyze a variety of reactions, the major focus has been on CO oxidation catalysis. In this work we focus on the important aspects related to the CO oxidation reaction. Special emphasis is placed on the studies undertaken on model nano-Au systems as these studies have considerably enhanced the understanding of the oxidation process. Pure Nano gold powder in a highly dispersed state can selectively oxidize CO in the presence of excess hydrogen (of tremendous interest to state-of-the-art low-temperature fuel cells); related studies are addressed in this review. The nano-gold catalysts have also been investigated for the direct vapor-phase oxidation of propylene to propylene oxide in the presence of molecular oxygen; these investigations are highlighted in this work.
Gold nano-particles confined in the walls of mesoporous silica (GMS) catalysts were successfully prepared by a novel and simple technique utilizing thioether functional groups in the walls of mesoporous silica to anchor HAuCl4. Calcination of the materials removed organic moieties and reduced the gold salt to gold nano-particles. In this procedure, the thioether groups were introduced into the silica wall via a co-condensation of tetraethyl orthosilicate (TEOS) with 1,4-bis(triethoxysily)propane tetrasulfide. These gold containing mesoporous catalysts have unusually high surface area and pore volume.
The catalysts were evaluated for the solvent free liquid phase oxidation of benzyl alcohol by molecular oxygen. High selectivity to benzaldehyde was obtained under the reaction conditions of 403 K, 15 atm and 5 h in an autoclave. The 1.5% GMS catalyst was also evaluated for oxidation of alcohols using toluene as solvent under flowing oxygen at atmospheric pressure at 353 K in a two-necked flask. Under these conditions the conversion of benzyl alcohol reached 100% after 2 h and it was demonstrated that the catalyst can be recycled three times without significant loss of activity.

Chromium nanoparticles and morphology

Several concentrations of adsorbent and adsorbate were tested, trying to cover a large range of possible real conditions. Results showed that the Freundlich isotherm represented well the adsorption equilibrium reached between nanoparticles and chromium, whereas adsorption kinetics could be modeled by a pseudo-second-order expression. The separation of chromium–cerium nanoparticles from the medium and the desorption of chromium using sodium hydroxide without cerium losses was obtained. Nanoparticles agglomeration and morphological changes during the adsorption–desorption process were observed by TEM.

Chromium nanoparticles and morphology changes during the process
In this study, suspended cerium oxide nanoparticles stabilized with hexamethylenetetramine were used for the removal of dissolved chromium VI in pure water.

Another remarkable result obtained in this study is the low toxicity in the water treated by nanoparticles measured by the Microtox® commercial method. These results can be used to propose this treatment sequence for a clean and simple removal of drinking water or wastewater re-use when a high toxicity heavy metal such as chromium VI is the responsible for water pollution.
ZnO and Cr doped ZnO nanoparticles were synthesized by chemical vapor synthesis (CVS) which is a modified chemical vapor deposition (CVD) process. The resulting powders consist of nanocrystalline particles and were characterized by X-ray diffraction (XRD), nitrogen adsorption (BET), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX), element analysis, and extended X-ray absorption fine structure (EXAFS) spectroscopy. The grain size decreases with increasing dopant concentration. The lattice constants extracted by the Rietveld method from XRD data vary slightly with doping concentration. XRD and EXAFS data analysis show that the Chromium dopant atoms are incorporated into the wurtzite host lattice.

Synthesis of Metal Alloy Nanoparticles

A simple, convenient, and general method for the synthesis of metal and metal alloy nanoparticles is presented. Irradiation of metal powders in suspension in either aqueous or organic solutions by unfocused 532 nm laser radiation produces nanoparticles with a homogeneous composition proportional to the composition of the starting metal powder mixture. This is demonstrated using UV−vis absorption spectroscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and modelization. The mechanism of alloy formation is discussed.
This Review is focused on the recent progresses in the synthetic approaches to the precise control of structure, size, shape, composition and multi-functionality of metal and metal alloy nanoparticles. Many of these strategies have been developed based on colloidal methods, and to limited extent, the galvanic and other methods.

Synthesis of Metal Alloy Nanoparticles in Solution by Laser Irradiation of a Metal Powder Suspension. The shape, size and composition often govern the chemical and catalytic properties that are important for electrochemical energy applications. The structure–property relationship and the design in controllable structures and morphologies for specific reactions such as oxygen reduction reaction (ORR) are emphasized.Magnetic nanoparticles have potential applications in high-density memory devices, but their complicated synthesis often requires high temperatures, expensive reagents, and postsynthesis annealing to achieve the desired magnetic properties. Current synthetic methods for magnetic nanoparticles often require post-synthetic modifications, suggesting that the practical application of magnetic nanoparticles will depend on the development of alternative synthetic strategies.
We report a biological template to directly grow magnetic nanoparticles of desired material composition and phase under ambient conditions. A phage display methodology was adapted to identify peptide sequences that both specifically bind to the ferromagnetic L10 phase of FePt and control the crystallization of FePt nanoparticles using a modified arrested precipitation technique.

Nano Element Particles on Dispersing in ODS Steel

From the irradiation resistance and high-temperature strength, oxide dispersion strengthened (ODS) ferritic steels are candidate materials for advanced and fusion reactors. For the development of advanced steels the key issue is to homogenize nano-particles into matrix. Recent studies have indicated that Ti addition can homogenize Y-Ti complex particles into ferrite matrix, but the reason of the effect of additional elements has not been clarified. In this model study, we focus on the effect of additional elements, such as IV and V families and other oxide formers, which can control potentially the distribution of the oxide particles.

The materials used in this study were based on Fe-9Cr-Y2O3 alloys which were mechanical alloyed (MA) from the powder of Fe, Cr and Y2O3, which was added systematically with the element of Ti, Zr, Ta, V, Nb, Hf, Al, Si and others. Usually ODS fabrication process is required for hot extrusion, but we annealed up to 1150 C for simplify the microstructure. To evaluate the distribution of ODS Nano Element Particles ; we used TEM equipped with EDS after electro-polishing or FIB techniques.

(1) In the case of Si or Al addition, oxides were disappeared after MA process, which means Y2O3 and other elements should be in solution at non-equilibrium condition. Two types of oxides of Y2O3 and Al2O3 or SiO2 developed after the annealing at 850 C,b> developed after the annealing at 850 C, but only complex oxides were developed after the annealing at 1150 C. This result suggests that the oxide formation is independent process for Y and Si or Al. (2) In the case of Ti addition, oxides also were disappeared after MA process, but developed after annealing at 1150 C. This means that Ti can stabilize complex oxides of Y and Ti, and enhance the fine distribution of the oxides comparing with simple Fe-9Cr-Y2O3 alloy.

Microwave hybrid synthesis of silicon carbide nanopowders

Nanosized silicon carbide powders were synthesised from a mixture of silica gel and carbon through both the conventional and microwave heating methods. Reaction kinetics of SiC formation were found to exhibit notable differences for the samples heated in microwave field and furnace. In the conventional method SiC nanopowders can be synthesised after 105 min heating at 1500 °C in a coke-bed using an electrical tube furnace. Electron microscopy studies of these powders showed the existence of equiaxed SiC nanopowders with an average particle size of 8.2 nm. In the microwave heating process, SiC powders formed after 60 min; the powder consisted of a mixture of SiC nanopowders (with two average particle sizes of 13.6 and 58.2 nm) and particles in the shape of long strands (with an average diameter of 330 nm).
The powders were prepared by a sol-gel process. Dielectric constants (ϵ′) and dielectric loss tangents (tanδ) were measured within the microwave frequency range from 4 to18 GHz. Both ϵ′ and tanδ of pure SiC nanopowder are much higher (ϵ′=40–50, tanδ=0.6–0.7) than for the doped ones over the frequency range. The dielectric parameters decreased with increasing aluminum and nitrogen contents. Infrared (IR) spectra were measured in the range from 500 to 4000 cm−1, showing that the background of pure SiC nanopowder is also much higher than for the doped ones. The possible mechanisms of these promising features of undoped SiC nanopowder are discussed.
By a simple and controlled method, that is, by electroless plating, nickel has been deposited on the surfaces of Silicon Carbide Nanopowders Energy dispersive spectrometry (EDS) spectra show that pre-treatments of the silicon carbide nanoparticles have an important influence on the effect of electroless nickel plating. Transmission electron microscopy images and EDS spectra of silicon carbide nanoparticles before and after electroless nickel plating reveal that nickel has been deposited on the surface of silicon carbide nanoparticles and the deposited nickel and silicon carbide nanoparticles are bound tightly.

The Extinction Spectra of Silver Nanopowders Arrays

Influence of Array Structure on Plasmon Resonance Wavelength and Width
We use high-quality electrodynamics methods to study the extinction spectra of one-dimensional linear chains and two-dimensional planar arrays of spherical Silver Nanopowders, placing emphasis on the variation of the plasmon resonance wavelength and width with array structure (spacing, symmetry), particle size, and polarization direction. Two levels of theory have been considered, coupled dipoles with fully retarded interactions and T-matrix theory that includes a converged multipole expansion on each particle. We find that the most important array effects for particles having a radius of 30 nm or smaller are captured by the couple dipole approach.

Our calculations demonstrate several surprising effects that run counter to conventional wisdom in which the particle interactions are assumed to be governed by electrostatic dipolar interactions. In particular, we find that for planar arrays of particles with polarization parallel to the plane the plasmon resonance blue shifts as array spacing D decreases for D larger than about 75 nm and then it red shifts for smaller spacings. In addition, we find that the plasmon narrows for D > 180 nm but broadens for smaller spacings.

The results can be rationalized using a simple analytical model, which demonstrates that the plasmon wavelength shift is determined by the real part of the retarded dipole sum while the width is determined by the imaginary part of this sum. The optimal blue shifts and narrowing are found when the particle spacing is slightly smaller than the plasmon wavelength, while red shifts and broadening can be found for spacings much smaller than the plasmon wavelength at which electrostatic interactions are dominant. We also find that the array spectrum does not change significantly with array symmetry (square or hexagonal) or irradiated spot size (i.e., constant array size or constant particle number).

The application of metal nanowires

Metal nanowires can have a variety of forms. Sometimes they appear in the order to non crystal, such as five symmetrical or helix. Electronic in the Pentagon pipe and spiral pipe winding.

This lack of crystal order is because the nanotubes in only one dimension (Zhou Xiang) reflect cyclical, while in other dimensions can have any order to the law of energy. For example, in some cases, nanowires can show five fold symmetry, this symmetry cannot be observed in nature, but can be found in a small amount of atoms contributing to clusters. The five fold symmetry equivalent atoms cluster twenty fold symmetry: Twenty surface body is low energy states of a cluster of atoms, but because the surface of the body twenty can not be repeated indefinitely in all directions and fill the whole space, this order is not observed in the crystal.

In electronic, optoelectronic and nano electronic and mechanical devices, nano wires may play an important role. It also can be used as in the synthesis of additives, quantum devices in the line, field emitters and biological molecular nano sensor.

Metal nanowires can be natural sunlight came together in a very small area in the crystal, light gathering ability is 15 times the average light intensity. Because of the wavelength diameter is smaller than the incident solar light nanowire crystals, can cause the nanowires inside the crystal and the surrounding light intensity of resonance. The study participants, just to get the doctor degree of research on Niels Pohl Peter Klogstrup explained that the photons through resonance emit more concentrated (solar energy conversion is realized in the process of dissemination in the photon), which helps to improve the conversion efficiency of solar energy, so that the solar cell technology nanowires get real ascension based on the.