Nano Diamond Powder at Its Best

The unique features of nanodiamonds have demonstrated unprecedented performance in various fields. Nanodiamond powder is a state-of-the-art material widely used in polishing compositions, coatings, lubricants and polymers. Currently nanodiamond powder is rapidly finding its way into biomedicine, Thermal Management in electronics, energy storage, field emission displays and other advanced applications.

Ray’s technology for producing nanodiamonds is based on the laser treating of specially prepared targets containing carbon soot mixed within hydrocarbon media. In contrast to the traditional technology of nano diamond powder synthesis by detonation of explosives in metal reactors, Ray’s method is controllable, environment-friendly and non-hazardous. Ray-nanodiamonds are of much higher purity than detonation nanodiamonds available today in the market. Industrial manufacturing of nanodiamonds by Ray technology will lead to significant reducing the cost, better results in most existing applications, rapid enhancing of Global Nanodiamond Powder Market and appearance of new nanodiamond applications where the purity of powder is of special importance.

In addition, it has developed new approach in the design novel nanodiamond composite materials with desired properties. This technology is based on special nanodiamond surface modification, full disaggregation and covalent bonding between diamond nanocrystals and molecules of chosen material. Uniform introducing nanodiamonds within the medium results in increase of nanodiamond performance in each compound and in the possibility to reduce nanodiamond content and the cost of the composite material. Due to this innovative approach, it has developed low cost and highly efficient nanodiamond based products for various technological processes.

The usability and applicability of nanotechnology is wide-ranging. The principle of nanotechnology that allows man to manipulate the molecular structure of materials has also made it possible for new innovations to flourish. Today, nanotechnology has grown to such an extent that about a thousand products are being developed or manufactured in laboratories all around the world using the technology. Passive nano-materials are already available for the cosmetics and food industry. Carbon allotropes nano-materials are also being used for textile, food packaging, appliances and many other manufacturing sectors.

The building industry has also adopted the use of nano-materials for surface and protective coatings products, using what is called “surface functionalized nano-materials.” Nano-particles like dodecanethiol functionalized gold particles have unique surface chemistries that can be controlled. Their adhesion properties can be changed. Nano-powders can be dispersed to polymers and protective coatings. When these nano-materials are combined with coatings and applied to target surfaces, they change the surface properties and make it more resistant to UV rays, typical corrosion, and many types of damages.

Nanotechnology Innovation: Protective Super-Paints

The coatings industry is stepping up the production of nanotechnology products. Just last year, an Italian paint manufacturer developed superpolymers and protective coatings based on a patented nanotechnology. The results are anti-corrosive fire-resistant super-paints based on nano-clay composites. Nano-clay is a material that has outstanding barrier properties and is very cost-efficient in its application. The anti-corrosive coatings will soon be in the market this 2010.

Many other anti-corrosion formulations based on nano-materials are also used in the construction and underwater industries. Heavy machinery painting applications often require the best performance in protective coatings. In the oil extraction and energy generation industries, nano-tech protective coatings that are resistant to fluctuating and extreme temperatures are also being used.

Excellent Surface Protection with Nanotechnology

In terms of surface protection, nanotechnology is often used to formulate nano-scale coatings that make the target surfaces high-performing and resistant to damages.

The Diamon Fusion® nanotechnology is one good example of this technological advancement. Theirs is a patented technology to manufacture capped silicone films. Using a patented chemical vapor deposition process, the technique is employed to silicon-dioxide-based surfaces. These coatings are also effective on glass, ceramic, granite or porcelain surfaces. The technology involves a two-stage chemical process. The first stage creates cross-linked films in silica-treated surfaces. The second stage caps the surface. The coatings thereby increase the surface’ ability to repel water intrusion. Aside from this unique waterproofing property, the protective coatings can also provide the surface with good resistance against surface contaminants. In essence, the protective coatings imbue the surface with easy self-cleaning abilities.

Diamon Fusion® coatings are applied in an air-tight room using a vapor deposition system for high-volume and batch applications. It can also be hand-applied as a liquid product to smaller projects. Whatever method of application was used, the coatings act in the same way. They create cross-linked and branched, capped silicone films in the surface. The final film is clear-colored and seals the surface tightly. The bond formed by the chemical process is unbreakable from then on.

Related reading: Nickel Oxide Nanoparticles multi walled carbon nanotubes

An Introuduction of Aluminum Oxide Nanopowder

Aluminum oxide nanopowder Product Features:US3023 g-phase nano-Al2O3 with small size, high activity and low melting temperature, it can be used for producing synthetic sapphire with the method of thermal melting techniques; the g-phase nano-Al2O3 with large surface area and high catalytic activity, it can be made into microporous spherical structure or honeycomb structure of catalytic materials. These kinds of structures can be excellent catalyst carriers. If used as industrial catalysts, they will be the main materials for petroleum refining, petrochemical and automotive exhaust purification. In addition, the g-phase nano-Al2O3 can be used as analytical reagent.

Aqueous Dispersions

NanoArc® Aluminum Oxide nanoparticles are available as concentrated (up to 50 wt%) dispersions in DI water. The aqueous NanoArc® Aluminum Oxide dispersions feature proprietary surface treatment technology to enable formulation of the nanoparticles into systems ranging from pH 4 to 10.

The technology also ensures compatibility of the NanoArc® Aluminum Oxide nanoparticles with aqueous formulations containing emulsion resins, both in-can and post-cure.

In addition, untreated NanoArc® Aluminum Oxide is available as a low pH (< 5) aqueous dispersion for applications not requiring the compatibility surface treatment. Solvent Dispersions Dispersions of NanoArc® Aluminum Oxide nanoparticles are available as concentrates (up to 50 wt%) in polar hydrocarbon solvents such as PMA (propylene glycol methyl ether acetate), nonpolar solvents such as mineral spirits, and protic solvents such as alkoxyethers. The NanoArc® Aluminum Oxide dispersions feature surface treatment technologies designed specifically for the solvent class, and tailored to be compatible with a wide range of application formulations employing solvents in these classes. In addition, custom dispersions of NanoArc® Aluminum Oxide can be provided for specific solvent types or application needs (e.g. non-volatile liquids, plasticizers, etc.). Monomer Dispersions NanoArc® Aluminum Oxide nanoparticles are available as concentrated (30 wt%) dispersions in low viscosity acrylate monomers such as TPGDA (tripropyleneglycol diacrylate) and HDDA (1,6-hexanediol diacrylate). These dispersions can be used to incorporate NanoArc® Aluminum Oxide nanoparticles into a wide variety of UV-cured coating formulations. The NanoArc® Aluminum Oxide nanoparticles are surface treated for compatibility, and do not interfere with the radiation cure process of the coatings. Other low viscosity acrylate monomer dispersions of NanoArc® Aluminum Oxide are also available on a custom basis. Custom Dispersions Nanophase metal oxide nanoparticles are available in a variety of concentrated dispersion forms, each featuring proprietary surface treatment technology to ensure complete dispersion to the primary particles and to prevent any aggregation upon incorporation into application systems. Related reading: nano diamond powder Silver Nanoparticles Antimicrobial

Types of Chemical Heater and Silicon Carbide Whisker

Silicon Carbide is the only chemical compound of carbon and silicon. It was originally produced by a high temperature electro-chemical reaction of sand and carbon. Silicon carbide is an excellent abrasive and has been produced and made into grinding wheels and other abrasive products for over one hundred years. Today the material has been developed into a high quality technical grade ceramic with very good mechanical properties.It is used in abrasives,refractories,ceramics,and numerous high-performance applications. Silicon carbide whisker can also be made an electrical conductor and has applications in resistance heating, flame igniters and electronic components. Structural and wear applications are constantly developing.

Chemical heater and etch process are important terms that must be learned by people and businesses in the semiconductor industry. In this article, I am sharing about the types of chemical heaters used in the wet process system as well as the silicon nitride etch process.

Types of chemical heater

Quartz – Gas Heater — a system that is designed to meet the growing demand for heated high purity gasses. It has the capacity of heating a wide range of gases including: Ammonia (NH3), Helium (He), Argon (Ar), Hydrogen (H2), Arsine (AsH3),Hydrogen Bromide (HBr), Boron Trichloride (BCl3),Hydrogen Chloride (HCl), Carbon Dioxide (CO2), Nitrogen (N2),Carbon Monoxide (CO), Chlorine (Cl2), Nitrous Oxide (N2O), Oxygen (O2),Disilane (Si2H6), Sulfur Dioxide (SO2),Methylsilane (SiH3CH3)

Quartz – Fluid Heater — used in the semiconductor industry and its traditional application includes recirculation loop, either as the sole head source or a combination of a heated quartz tank.

SiC – HF & KOH Heater — designed for heating HF (hydrofluoric acide), KOH (potassium hydroxide), and other high PH chemistries. It uses high purity Silicon Carbide (SiC) as a heat transfer material because it has excellent heat transfer properties and eliminates the risk of contamination due to Teflon breakdown.
Interesting Facts about the Silicon Nitride Etch process

To be able to achieve the greatest etch rates and best selectivity, the phosphoric acid should have the highest ratio of water at a given temperature. For as long as the boil point is maintained, the etch rate of both Si3N4 and SiO2 can be precisely controlled.

Maintaining a boiling solution is one of the challenges in the etch process. When phosphoric acid is heated, the water solution begins boiling off. When temperature is not maintained, it affects the etching process as the acid concentration increase. Wet etch companies use a standard temperature controller to maintain temperature, but the water concentration will decrease and will change the etch rates. As a solution, wet etch process engineers use water addition system.

A technology called closed “reflux” system is used and it is created above the bath using condensing collar and a lid – this is to minimize water addition.

The chemical fumes and high temperatures that Nitride Etch tanks are subjected to are known to decrease bath life substantially by attacking the sealant that prevents liquid and fumes from entering the heater area. This problem has been addressed through the use of aquaseal.

Quartz Nitride Reflux system is engineered to address the unique needs of the silicon nitride etch process. It gives the following benefits to customers: process uniformity, lot-to-lot repeatability, prevents stratification.

Related reading:silicon dioxide nanoparticles multi walled carbon nanotubes

The Tern Nano-Technology Article

Some time ago I ran across the tern Nano-Technology while searching the net. According to Wikipedia, a brief description is “the control of matter on an atomic and molecular scale”. The Nano-scale is so small it is hard to imagine. To give you some idea a typical penny is about 19,000,000 Nano meters in diameter.

Even as small as it is, Scientists and Engineers have discovered how to manage and manipulate these tiny Nano Element Particles into some very useful and amazing new materials. The other amazing aspect of Nano-Technology is that when elements are reduced to a Nano-scale their physical characteristics change. Solids turn to liquids, stable materials turn combustible, insulators become conductors and opaque substances become transparent. With this knowledge there are and will be some amazing new products introduced into our daily lives.

Although most experts think that the changes brought about by this new science would improve our way of living, some are not so sure. I still continued my quest for new products and would do a search every so often just to see what was out there or what was new. During one of those searches, I ran across a company called Cermet Labs Inc. Their web site was very impressive and the information presented on the site was interesting. They made some claims that I am sure we have all heard before, however since it involved Nano-Technology I read on.

They seemed to have a variety of evidence to back up their statements about what their product would do. I considered the independent lab tests presented and the data on the field testing. It sounded reasonable and I decided to give them a call for more information. As it turns out they were located in a Detroit suburb which was within easy driving distance for me. I make an appointment and met with their CEO and Sales Manager. They made a very detailed presentation about the science behind their product. I understood some of it and some I did not. I guess wasn’t as concerned about how to build a watch, just could I get the correct time. The end result was that I felt it was a reputable company and product; however I still wanted to prove to myself that the claims were true.

The old seeing is believing theory. We went out to the parking lot and injected a 10ml syringe into the oil filler inlet of my car. I discovered later we really did not install it exactly as the instructions called for but it was in the engine now so I was anxious to see the results. Since I hadn’t kept actuate records on my mileage I decided I had better start so I could have a before number to compare to. When I started to keep track of my mileage the car had 205,427 miles on it. I though the car ran well and was getting reasonable mileage. During the first 636 miles the mpg was 21.18 which I though was not bad for a full size 96 Buick Park Avenue.

I was told that during the first 2000 miles of the run in period my mileage could vary. After 1912 miles I was pleased to find that my mpg was now at 25.14. Also it seemed that the car just ran smoother and had reasonably good power. I stopped keeping track for a while and just went about my normal driving. One day it seemed like I was going through a tank of gas quicker that usual. So I decided to check a tank full just to see if anything had changed. My odometer now read 213056 miles and the tank full of gas gave me 24.63 miles per gallon.

According to the EPA rating when the car is new, it should produce 17 and 27 highway. Considering the age and I believe I got this car miles mileage and the best performance is possible. I also believe that, the car’s performance and it is a ceramic ceramic processing laboratory reason. As a side note, I have to laugh when I saw a new car, claiming they will get 27 miles per gallon, $30000 worth of TV advertising. I can fill the tank at $30000 600. It is about 230000 miles.

Related reading:Chromium nanoparticles tungsten carbide cobalt nanopowder

Low Cost Synthesis of Silicon Carbide Nanopowders

Among modern ceramic materials, silicon carbide (SiC) and silicon nitride (Si3N4) has been successfully used in a variety of high-tech applications. SiC provides the effective combination of mechanical properties. It is widely used as an abrasive material and structure. It has high hardness, chemical inertness, than the melting temperature of the steel wear and oxidation of it for serious conditions such as high temperature sealing valve, rocket nozzle and wire drawing die and extrusion die for bearing applications because of its good wear resistance and corrosion resistance. In the tube by SiC to find its thermal properties and creep resistance of high temperature and hot electron exchange. The heating element from SiC. They can produce a high temperature of 1650 DEG C and medium in the air or inert considerable life. However, with any contact with water or hydrocarbon gas, can influence their age.

Silicon nitride has comparatively lower oxidation resistance and higher thermal conductivity than SiC. Major applications of silicon nitride are as automotive and gas turbine engine parts. It has high strength, fracture toughness and refractoriness which are required properties for ball bearings, anti-friction rollers. It performs remarkably when exposed to molten metal and/or slag.

A combined form of silicon carbide and nitride has been developed as silicon carbide grains bonded in silicon nitride matrix. This Si3N4-bonded silicon carbide is used for some critical applications where very high thermal shock resistance is required. For instance, in particular case of flame-out engine start-up, temperature reaches from ambient to 1600 °C in few seconds followed by an abrupt decrement to 900 °C in less than one second. Si3N4-bonded silicon carbide exclusively endures these conditions.

Traditional methods to produce these ceramic materials are energy intensive and hence expensive. For example, the Acheson process, which is the most widely adapted method to produce commercial-grade SiC, essentially takes 6 – 12 kWh to yield one kg of SiC. An inexpensive method, that uses low cost agro-industrial byproduct, is the pyrolysis of rice husks, first carried out by Lee and Cutler in 1975. Since then many researchers have discussed and used various process routes and modifications to obtain Silicon Carbide Nanopowders and/or silicon nitride, either in particulate or in whisker form, from rice husks.

Morphological studies on RH reveal that micron size silica particles are distributed in cellulosic part of RH. When these silica particles are made to react with carbon in biomass part of RH under specific experimental conditions, silicon carbide can result. Moreover, besides silicon carbide, modifications in process mechanism lead to formation of some other industrially useful products, viz. silicon nitride, silicon oxynitride (Si2N2O), ultra-fine silica, and solar-cell grade silicon.

Related reading: nano particles nano oxides

 

 

 

 

How to Evaluate Nickel Alloys

When buying nickel Metal Alloy Nanoparticles it is important to keep a checklist, you should check what different traits are important. Considering the magnetic properties, oxidation and sulfuration resistance, held in extreme weather, the metal’s hardness and resistance to stripe rust quality. These characteristics are important, stainless steel or nickel alloy in the choice to see. Today I will focus on three kinds of quality, the most representative: mechanical properties, manufacturing and cleaning, and erosion resistance.

Mechanical Properties

Before putting in an order, talk to an expert about what diverse temperatures the nickel alloy of interest performs well in. You need the product to work effectively whether it is positioned in a room emitting extreme heat or one maintaining consistent, comfortable room temperature. The operation of the metal should not change. This is essential to your business operations. You cannot have machinery suddenly stop functioning due to a temperature change. A breakdown of equipment puts a dent into your earnings and causes you to cough up money towards repairs.

Fabrication and Cleaning

Fabricating metal refers to how a piece is cut, bent and is put together through welding, fasteners and adhesives producing a certain metal finish. The cleaning aspect relates to the fabrication process for it is dependent on the finish.

Different metal finishes result in a wide degree of cleaning ease. You need to test the one you want before buying. Find a piece with the look you desire and incorporates a cleaning degree you are comfortable with. Just remember, most high quality nickel alloys display a gleaming finish even when placed in a harsh environment while lower quality metals tarnish, fade and exhibit a lack of sparkle.

Erosion Resistance

Using a type of material that cracks, falls apart and rusts is a problem. These defects affect the entire success rate of a business that depends on stainless steel machinery. You cannot keep stopping and starting whenever something breaks down. Having a reliable, strong, erosion resistance material keeps your work moving along smoothly.

Investing in high quality materials can make the difference between your financial situation and peace of mind.The better the quality, the more you pay for the repair and replacement costs, downtime.This allows you to target time and allows you to run your business without additional grief and money.To understand more about the types of metal and how the poor performance of the people from the rest.

Related reading: Silver Nanoparticles Antimicrobial Silver Nanoparticles Antimicrobial

Carbon Nanotubes For Solar Energy Systems

With the high demand of each priority list of alternative sources of energy, in every state of the engineer working with the hope to save the solar energy can provide the enterprises and individuals more gentle. Solar energy technology, and one of the most spectacular improvement is the introduction of carbon nanotubes (hollow tubes of carbon atoms) is a new solar power system. Carbon Nanotubes are not a recent discovery, they proposed a few years ago, they are their own strength promotion. People realize that they can be used in aircraft construction, lighter and stronger cars, buildings, and even soft ball. However, the fact that the new solar energy, carbon nanotube has launched in the solar system the system stored energy level increased in 100 times more common photovoltaic solar cells.

This finding is credited, for the most part, to a group of MIT chemical engineers. Through their research, they found that by using carbon nanotubes, solar energy can be super concentrated. Their studies showed that the nanotubes could form antennas that are capable of capturing and focusing light energy more effectively thus allowing smaller and more powerful solar arrays.

According to a recent study released in the Journal of Nature Materials by Michael Strano, Associate Professor of Chemical Engineering at MIT and the associated research team, the carbon nanotube antenna, or as they call it the “solar funnel”, might also be useful for other applications that require concentrated light. Among these applications, they specifically made mention of night vision goggles and telescopes.

At the most basic level, the way this process works; solar panels generate electricity by converting photons (packets of light energy) into an electric current. The nanotube boosts the number of photons that can be captured and then transforms this increased level of light into energy that can be funneled into the solar storage cell.

What the MIT team accomplished was the construction a special antenna consisting of fibrous ropes, only 10 micrometers (millionths of a meter) long and 4 micrometers thick. Each fibrous rope contained about 30 million carbon nanotubes. These ropes or micro fibers were made up of two layers of nanotubes with different electrical properties or bandgaps*. The inner layer of the antenna contained nanotubes with a smaller bandgap than the outer layer. This is important because excitons flow from high energy to low energy or, in this specific case, from the outer layer to the inner layer where they can exist in a lower, yet still excited, energy state.

So, what does all of this mean? Well, when light energy strikes the antenna, all of the excitons flow to the center of the fiber where they are concentrated and stored. Better methods of energy storage translate to improved efficiency and improved efficiency means more economical energy resources. As solar power becomes more economical more people will migrate to solar panel installation and solar powered homes and businesses.

The electrons can exist at different energy levels of any material existence.When the excitation energy of the electron is more a photon hits the surface in the material level, to be specific, particular material. The interaction between the excited electrons and holes left called excitons. The band gap of the difference between the electron and hole energy levels of labeled.

Related reading: nano powders nano particles

 

 

Something About Pure Nano Gold Powder

Can you imagine no bacterial clothing? Such clothing can be in the medical field is especially useful in health conditions, not only the important they can save a life! In particular, bacteria such as MRSA continue to threat the health of employees and medical clinics and medical centers with the whole world. Interestingly, a group of Professor developed a clothing anti bacteria, actually kill harmful microorganisms on the pants, shirt, etc..

Actually, numerous types of harmful bacteria exist in hospitals. However, MRSA causes the majority of the roughly 90,000 annual deaths that occur in the USA, due to bacteria.

Methicillin-resistant Staphylococcus aureus is the bacteria’s official name, although the media often refers to it as the “superbug.” MRSA can remain harmless sitting inside your nose or atop your skin. However, when you become weary, injured, or have undergone surgery recently, then MRSA can become harmful or even deadly.

One common way that MRSA can spread, is through clothing. Fortunately, some professors at Wilkes University (Pennsylvania) are working on a solution to this problem. They are using nanotechnology to sense bacteria and then destroy it. Nanotechnology involves working with objects that are so tiny that you need a powerful microscope to view them.

So what exactly are the searchers creating? They designed a machine that can coat fabrics with Pure Nano gold powder containing various materials. What are nanopowders, you ask? These are microscope particles whose diameters are tinier than one micrometer. In other words, they are roughly the viruses’ size. Because the naked eye cannot view them, a wearer of the treated clothing would not look like he had just rolled around in flour.

So how would the nanopowders work? After the special machine coats the fabric with the nanopowders, the fabrics could then detect and destroy particular bacteria that land on the surface of the clothing. Although washing clothing in antibacterial soap can currently destroy unwanted microbes, the nanopowders would perform that function between washings!

Unfortunately, even if the creation of the bacteria-killing fabric is a success, it might not appear on the market for several years. Until then, scrubs, such as cheap landau scrubs, are one of the best options for numerous types of medical personnel. Such attire is much more useful in preventing MRSA, than earlier medical attire and the original “medical attire”-street clothes, were.

In addition to being more hygienic than other types of clothing, scrubs also provide other benefits:

1、They are comfortable. Many people are even wearing scrubs for workouts, backpacking, and lounging. In fact, some people even wear scrubs as a substitute for pajamas!

2、They are available in a wide variety of colors, patterns, and sizes.

3、They are easy to wash, and they dry quickly.

Maybe one day we can purchase bacteria-killing clothing. Until that time, those in the medical field work can help prevent the spread of bacteria. The method includes clothes, transmission may limit microbial. Till clothing can make super bacteria skin, keep them at bay!

Use Up Raw Materials First In The US

In the United States we have abundant raw materials and natural resources. Many in the United States of America the mines have been closed, the raw materials we too much from other countries, must arrive here at a very high cost. Many of the raw materials we get from other nations are not as good as the raw materials we have here and that is a real problem.

Likewise in the future many of the raw materials we have in the United States we will not need because the likelihood of us making things out of steel and copper are not too probable. We will have Nano diamond powder tubes may have carbon, fiber optics, special composites and super alloys made from exotic metals or that have be re-engineered at the molecular level. Because this is the obvious future, we should use our own raw materials in the United States first.

Many economists and the old way of thinking believe we should use raw materials from other nations first and then when they ran out we would be last with our own raw materials and not have anything to worry about. However technology and the rapid advances in research and development has shown us that in the future we will not need these raw materials anyway.

Our goal should be to use our own raw materials in the United States first and work on innovation, research and development was prospected materials in the future to make things better, with their own raw materials. As long as we can use our own in a responsible and environmentally friendly way of raw material that is meaningful to the ground here for the first time to use our materials to use their own. Please consider take this into consideration in 2006.

The History Of Static Electricity

History

People have dealt with and managed the problems of static electricity for hundreds of years.For example, at the beginning of the fifteenth Century, military fortress, static control program implemented in the treatment of black powder to prevent ignition from electrostatic discharge (ESD). In early 1860, Vin Mills in the American use grounding and flame ionization techniques to eliminate static electricity steel tube and paper in the drying process of network. When American Navy sent the first nuclear submarine in the 50’s of the last century in the Arctic, typical of the antistatic agent used to reduce electrostatic influence to navigation equipment. Over the years, as electronic devices become smaller, faster, therefore, more vulnerable to the destructive effect of static electricity. In order to ensure the normal operation of electrical equipment to the electrostatic, Navy needs some form of control. Because the navy task, static control and increasing awareness of the whole world. Then, static control, industrial development, products and equipment control of electrostatic and electrostatic discharge.

Definitions

According to Grolier’s encyclopedia, Static Electricity is electricity at rest or the accumulation of electric charge, as opposed to an electric current which is the movement of electricity. The flow or movement of people and/or materials in and through the environment causes separation and therefore static electricity. A familiar example is when a person walks across a carpeted floor. Static Electricity is generated simply by the contact and separation of the soles of shoes from the carpeted floor. ESD occurs when the electrostatic charge is transferred from a material that carries the charge to an electrostatic sensitive device. In the example above this ESD is the shock felt after walking across the carpeted floor and then touching a door knob. It is this ESD, which comes in varying degrees, that can be most damaging to electrical devices and other industrial, commercial and consumer products.

Examples

Static Electricity, a natural phenomenon, and consequently ESD are the primary causes of multiple number of problems affecting industry, business and personal life. These problems can be as simple as the shock resulting from walking across a carpet; as costly as the destruction of sensitive electronic components or jamming of machinery; and as dangerous as the ignition of combustible vapors, powders or dust. Typical problems caused by static;

Attraction of dust, dirt and bacteria to all environmental surfaces, as well as to products and product packages Damage or destruction of sensitive electronic components and sub-assemblies during manufacture, testing, packaging, shipping or receiving.

Computer and electronic office equipment data errors memory loss, system failures and other glitches.

Charge generation on surfaces of tote boxes and carriers used to process and store electronic components can create a potential for discharge. Jamming or slipping of paper, plastics or other material during printing, packaging or converting. Ignition of combustible vapors, dust or solvents causing fire or explosion. Irregularities caused by static in high quality printing, heat sealing, silk screening, lamination and other applications.

Work benches and production surfaces in electronic manufacturing and repair facilities will triboelectric charge components, assemblies, or their handling containers in contact and separation with a surface thereby creating a discharge

FACTS

1. Almost any material can generate static electricity. The ability to store or dissipate the charge depends on the type of material

2. Static can cause damage to sensitive devices resulting in instant failure. In contrast, static damage can also go undetected for a period of times resulting in product failure once the product is in service.

3. Electrostatic fields are associated with charged objects

4. The degree of severity of ESD events is contingent upon the type of discharge which occurs.

Electrical Characteristics of Materials

In order to understand how to control the generation of static electricity and the prevention of ESD, one must know the different electrical characteristics of materials that can generate static electricity. There are four varying degrees of electrical resistance.

Conductive Silver Powders allows a charge to flow across or through its volume easily. Surface Resistivity < 106 ohms/sq The miracle of the products have been provide solutions for static control in the past 20 years in India.Our high quality products to help prevent the electrostatic discharge damage sensitive electronic components.Our products include electrostatic prevention personnel grounding, anti-static work surface, anti-static packaging.