All About Aluminum Oxide Nanopowder

Nano-aluminum oxide, fumed silica is the use of the BET surface area obtained by gas-phase process is similar to the particle diameter of 100 ± 15 aluminum oxide 13 nm. Has all the advantages of hydrophilic fumed silica, improve static friction powder of positive chargeability.Nano aluminum oxide diameter distribution, high resistivity, with good insulation properties, widely used in plastics, rubber, ceramics, paints and other fields requiring high insulation performance.

A-MITE™ powders and dispersions are recently developed inorganic aluminum oxide nanopowder with unique abrasion resistance properties for use in optical lenses, windows, flooring and other surfaces and coatings prone to scratching. A-MITE-A™ products are uncoated and hydrophilic. A-MITE-O™ products are coated with an organic silane (1-4%) and are hydrophobic. Our oxide nanopowders are typically around 10nm, 50nm, 100nm, and/or 200nm. They are also available as a nanofluid through the AE Nanofluid production group. Nanofluids are generally defined as suspended nanoparticles in solution either using surfactant or surface charge technology. Nanofluid dispersion and coating selection technical guidance is also available. Other nanostructures include nanorods, nanowhiskers, nanohorns, nanopyramids and other nanocomposites. Surface functionalized nanoparticles allow for the particles to be preferentially adsorbed at the surface interface using chemically bound polymers.

Development research is underway in Nano Electronics and Photonics materials, such as MEMS and NEMS, Bio Nano Materials, such as Biomarkers, Bio Diagnostics & Bio Sensors, and Related Nano Materials, for use in Polymers, Textiles, Fuel Cell Layers, Composites and Solar Energy materials. Nanopowders are analyzed for chemical composition by ICP, particle size distribution (PSD) by laser diffraction, and for Specific Surface Area (SSA) by BET multi-point correlation techniques. Novel nanotechnology applications also include Quantum Dots. High surface areas can also be achieved using solutions and using thin film by sputtering targets and evaporation technology using pellets, rod and foil. For technical, research and safety information A-MITE™ or for more information on nanotechnology, please contact our customer service department.

Aluminum (Al) atomic and molecular weight, atomic number and elemental symbolAluminum, also known as Aluminium, (atomic symbol: Al, atomic number: 13) is a Block P, Group 13, Period 3 element with an atomic weight of 26.9815386. It is the third most abundant element in the earth’s crust and the most abundant metallic element.Aluminum Bohr ModelAluminum’s name is derived from alumina, the mineral from which Sir Humphrey Davy attempted to refine it from in 1812. It wasn’t until 1825 that Aluminum was first isolated by Hans Christian Oersted. Aluminum is a silvery gray metal that possesses many desirable characteristics. It is light, nonmagnetic and non-sparking. It stands second among metals in the scale of malleability, and sixth in ductility. It is extensively used in many industrial applications where a strong, light, easily constructed material is needed. Elemental Aluminum Although it has only 60% of the electrical conductivity of copper, it is used in electrical transmission lines because of its light weight. Pure aluminum is soft and lacks strength, but alloyed with small amounts of copper, magnesium, silicon, manganese, or other elements it imparts a variety of useful properties. Aluminum was first predicted by Antoine Lavoisierin 1787 and first isolated by Friedrich Wöhler in 1827. For more information on aluminum, including properties, safety data, research, and American Elements’ catalog of aluminum products, visit the Aluminum element page.

Related reading: silicon dioxide nanoparticles Single-walled Carbon Nanotubes

An Introduction of Silicon Carbide Whisker

Silicon carbide whiskers is a little flawed, there is a certain aspect ratio of single crystal fibers, it has a very good temperature resistance and high strength. Mainly used for applications requiring high temperature high-strength material toughening occasions. Such as: aerospace materials, high-speed cutting tool. Currently, with high cost performance.

Silicon carbide whisker belong to a diamond crystal, is now synthesized whiskers highest hardness, modulus maximum, maximum tensile strength, heat resistance temperature of the highest whiskers products, divided the α type and β type two forms, which is superior to α-type β-type and has a higher hardness (Mohs hardness of 9.5 and above), better toughness and conductivity, wear resistance, high temperature, particularly resistant to earthquake , corrosion resistance, radiation has been applied on and engine, high-temperature turbine rotor, special parts on aircraft, missiles shell.

Silicon carbide whiskers is a little flawed, there is a certain aspect ratio of single crystal fibers, it has a very good temperature resistance and high strength. Mainly used for applications requiring high temperature high-strength material toughening occasions. Such as: aerospace materials, high-speed cutting tool. Currently, with high cost performance.

Cubic silicon carbide whisker whiskers, and belong to a diamond crystal, is now synthesized whiskers highest hardness, modulus maximum, maximum tensile strength, heat resistance temperature of the highest whiskers products, divided the α type and β type in two forms, including β-type performance than α type. β type than the α type having a higher hardness (Mohs hardness of 9.5 and above), better toughness and conductivity, wear resistance, high temperature, especially earthquake-resistant, corrosion-resistant, resistant to radiation, have housing in aircraft, missiles on and engine, high-temperature turbine rotor, has been applied on special parts.

Silicon carbide is extremely anisotropic crystal growth is achieved by a catalyst on the basis of silicon carbide particles on the surface along the crystal growth of the short fibers, there are two main methods currently producing a gas phase reaction method and a solid material, which method is more solid material It is economical and suitable for industrial production.

Japan and the United States show the synthesis of silicon carbide of a high enthusiasm, in terms of reducing costs and improving the quality of work done a lot of research. Ramsey and other American to amorphous silica as silicon source rice husk species (obtained from burning carbonized rice husk), were mixed in pulverized petroleum coke carbonized rice husk and powder sintering to produce a silicon carbide products. Japan Tanaka and other acid-boiled rice husk, cleaning, carbonation, sintering and other steps to obtain high-purity silicon carbide products.

The first production of silicon carbide whiskers of manufacturers, production of silicon carbide whiskers is a high strength beard shape (one-dimensional) single crystal, high strength, high modulus, and many other excellent mechanical properties, it is widely used in metal matrix, ceramic matrix composite. Mainly used in ceramic cutting tools, high temperature components in the field of aerospace, main bearing strong, large mud pumps, etc. Add to this new material has obtained a more excellent high temperature components, wear resistance, widely used as a structural material in aviation, aerospace, automotive, machinery, petrochemical and other, known as the king of whiskers said. In particular, it has a special significance in the automotive, aerospace engines, housing and so on.

In addition, it was added as an enhanced component plastic matrix, metal matrix or ceramic matrix and play a role in enhancing toughening, high thermal conductivity Sic use of nano materials, high insulation resistance, as large scale integrated circuit substrates in the electronics industry and packaging materials. As an optical material information in the television show, fields of modern communications and the Internet with a high value.

Silicon carbide whiskers in the manufacture of high-strength plastic, metal and ceramic applications work, you can speed up the upgrading of key traditional products. As the nano-silicon carbide whiskers of outstanding features, it has a special role in the aerospace industry industry sectors, namely in aircraft, missile applications and engine housing, the high temperature turbine rotor, special components, military industry and so it huge demand for civilian industry.

Related reading: aluminum oxide nanopowder cnts composite propellant

Comparisons of Mineral Makeup

Mineral foundations have increased in popularity over the years as people have been drawn to the idea that it’s more natural, therefore kinder to and more comfortable on your skin. Though many people think this just includes powder foundations, liquid formulas can be mineral foundation too.

They call them mineral make up. They call them pure. They say they have only “good things” in them. Is this true? And how do they compare in price? Let’s compare apples to apples. I’ve listed all the well know brands of mineral cosmetics, compared their ingredients, their cost, and their actual cost per gram. Although each company offers several products such as foundations, blushes, eye shadows, etc, I’ve chosen the most popular – foundations – as a basis of comparison. I’ve stacked them against Purely Cosmetics to see how each holds up against the other.

Any ingredient marked in bold contains a non-pure, non-earth mineral. Some even worse: parabens are preservatives that are thought to be linked to breast cancer and early aging of the skin. Bismuth oxychloride is a filler that is a by-product of lead and copper processing and is irritating to the skin.Copper Oxide Nanoparticles is good for you!

This is lengthy, but you’ll find some real eye openers. Your favorite mineral makeup is most likely listed here, as I’ve compared Bare Escentuals, Jane Iredale, GLO Minerals, Sheer Cover, Laura Mercier, Youngblood, PUR Minerals, L’Oreal, and Neutragena to Purely Cosmetics.

Note about micronized particles: The use of micronized titanium dioxide is controversial. Some research indicates that micro-size particles do stay on the surface of the skin and do not enter the bloodstream, while others question the long-term safety of using nanoparticles. Studies have shown that it is possible for micronized titanium dioxide particles to penetrate cells and eventually lead to DNA damage following sun exposure. Asthmatics and others with repiratory problems should be cautioned about using loose powders with micronized ingredients as they are easily airborne. Micronized particles are liked by some mineral makeup companies because they provide a smooth coverage and adhere easily. The smaller the particle, the more sheer and natural looking the application. On the flip side, micronized particles cannot provide medium to full coverage for those who need to cover life’s imperfections.

Related reading: boron nitride powder silicon carbide whisker

Information of Most Versatile Precious Metal Ruthenium

Ruthenium metal powders are called “two ruthenium Foix.” When sunlight, molecular diRuthenium Foix will change shape into a semi-stable state, but this state is very safe. They can be stored indefinitely heat by means of a catalyst, which in turn can be restored to its original shape, releasing tremendous heat stored. The heat can be used to heat the house.

Although alphabetically last in a list of precious metals, ruthenium is considered to be the most versatile of this group of elements. There is a total of six precious metals found within the platinum group, with ruthenium being the most versatile.

Ruthenium is a hard white-colored metal that has four crystallization varieties. Ruthenium does not tarnish under general circumstances, but will quickly oxidize quickly with exposure to air. Two methods of plating will improve its durability, these are known as electrodeposition and thermal decomposition.

Alloys comprised of ruthenium and palladium or ruthenium and platinum are commonly used as materials for electrical contacts because of the excellent wear resistance. Ruthenium is known to be very effective when used as a hardener when used as an alloy for palladium or platinum products. Adding ruthenium to titanium, the resulting alloy has a significantly improved resistance to corrosion.

There are other applications for ruthenium, including manufacture of film chip resistors, as an alloy with gold for high end jewelry, industrial turbine blades for aircraft engines (because it is a high temperature super alloy), tips for high end fountain pens, as part of a chemical process for mixed-metal oxide anodes or removal of hydrogen sulfide during industrial manufacture; parts of optical sensor devices; and radiography equipment (such as that required for eye sensors).

Ruthenium is found in various ores in the Ural Mountain range in Russia, as well as parts of North America and South America. Other locations, including Sudbury in Ontario, Canada, in pentlandite, (which is an sulfide comprised of iron and nickel) as well as small areas of South Africa, in pyroxenite (which is an ultrabasic igneous rock formation) also contain sources of ruthenium. This precious metal is found alongside the other five precious metals that are included within the platinum group.

Ruthenium is derived for commercial purposes as a by- product when nickel and copper is processed. This is similar to the way that the other platinum family precious metals are obtained. Direct processing of certain platinum ores can also be a way to obtain ruthenium. Isolating ruthenium can only be done following a complex chemical process. This process will ultimately yield a powder form which can be consolidated through argon arc-welding techniques.

Ruthenium is rather rare, ranking 74th among all of the chemical metal elements, making it one of the most rare elements. Worldwide, there are approximately 5000 tons available, and this amount is mined at a rate of approximately 12 tons per year. Ruthenium is valued at around $1000 USD per troy ounce.

Related reading: aluminum oxide nanopowder Silver Nanoparticles Antimicrobial

Information of Silicon Dioxide Nanoparticles

Since nanomaterials are a heterogeneous group of substances used in various applications, risk assessment needs to be done on a case-by-case basis. Here the authors assess the risk (hazard and exposure) of a glass cleaner with synthetic amorphous silicon dioxide (SAS) nanoparticles during production and consumer use (spray application). As the colloidal material used is similar to previously investigated SAS, the hazard profile was considered to be comparable. Overall, SAS has a low toxicity. Worker exposure was analysed to be well controlled. The particle size distribution indicated that the aerosol droplets were in a size range not expected to reach the alveoli. Predictive modelling was used to approximate external exposure concentrations. Consumer and environmental exposure were estimated conservatively and were not of concern. It was concluded based on the available weight-of-evidence that the production and application of the glass cleaner is safe for humans and the environment under intended use conditions.

Silicon Oxide(SiO2) Nanopowder, silicon dioxide nanoparticles or nanodots are high surface area particles. Nanoscale Silicon Oxide Nanoparticles or Silica Particles are typically 5 – 100 nanometers (nm) with specific surface area (SSA) in the 25 – 50 m 2 /g range. Nano Silicon Oxide Particles are also available in Ultra high purity , high purity, coated, hydrophilic, lipophilic and dispersed forms. They are also available as a nanofluid through the AE Nanofluid production group. Nanofluids are generally defined as suspended nanoparticles in solution either using surfactant or surface charge technology. Nanofluid dispersion and coating selection technical guidance is also available. Other nanostructures include nanorods, nanowhiskers, nanohorns, nanopyramids and other nanocomposites. Surface functionalized nanoparticles allow for the particles to be preferentially adsorbed at the surface interface using chemically bound polymers.

Development research is underway in Nano Electronics and Photonics materials, such as MEMS and NEMS, Bio Nano Materials, such as Biomarkers, Bio Diagnostics & Bio Sensors, and Related Nano Materials, for use in Polymers, Textiles, Fuel Cell Layers, Composites and Solar Energy materials. Nanopowders are analyzed for chemical composition by ICP, particle size distribution (PSD) by laser diffraction, and for Specific Surface Area (SSA) by BET multi-point correlation techniques. Novel nanotechnology applications also include Quantum Dots. High surface areas can also be achieved using solutions and using thin film by sputtering targets and evaporation technology using pellets, rod and foil.. Research into applications for Silicon Oxide nanocrystals includes use as a dielectric coating, in solar cell applications, as a high temperature insulator, as a gas sensor and for use in other coatings, plastics, polymers and wire and further research for their potential electrical, optical, imaging, and other properties Silicon Oxide Nano Particles are generally immediately available in most volumes. Additional technical, research and safety (MSDS) information is available.

Silicon (Si) atomic and molecular weight, atomic number and elemental symbolSilicon (atomic symbol: Si, atomic number: 14) is a Block P, Group 14, Period 3 element with an atomic weight of 28.085. Silicon Bohr MoleculeThe number of electrons in each of Silicon’s shells is 2, 8, 4 and its electron configuration is [Ne] 3s2 3p2. The silicon atom has a radius of 111 pm and a Van der Waals radius of 210 pm. Silicon was discovered and first isolated by Jöns Jacob Berzelius in 1823. Silicon makes up 25.7% of the earth’s crust, by weight, and is the second most abundant element, exceeded only by oxygen. The metalloid is rarely found in pure crystal form and is usually produced from the iron-silicon alloy ferrosilicon. Elemental Silicon Silica (or silicon dioxide), as sand, is a principal ingredient of glass, one of the most inexpensive of materials with excellent mechanical, optical, thermal, and electrical properties. Ultra high purity silicon can be doped with boron, gallium, phosphorus, or arsenic to produce silicon for use in transistors, solar cells, rectifiers, and other solid-state devices which are used extensively in the electronics industry.The name Silicon originates from the Latin word silex which means flint or hard stone.

Related reading: nano diamond powder silicon carbide whisker

The Antimicrobial Features of Nano Silver

Antibacterial coating nano silver is regarded as a new generation of antibacterial agents and has great potential to be utilized in antibacterial surface coatings for medical devices, food package and industrial pipes. However, disadvantages such as easy aggregation, uncontrollable release of silver ions and potential cytotoxicity greatly hinder its uses. Recently, polymers possessing unique functions have been employed to fabricate nanocomposite coatings with nanosilver for better biocompatibility and enhanced antibacterial activity. This review starts with progress on antibacterial mechanism and cytotoxic effects of nanosilver. Antibacterial functions of polymers are subsequently discussed. Advances of fabrication of polymer/nanosilver composite coatings for antibacterial applications are surveyed. Finally, conclusions and perspectives, in particular future directions of polymer/nanosilver composite coatings for antibacterial applications are proposed. It is expected that this review is able to provide the updated accomplishments of the polymer/nanosilver composite coatings for antibacterial applications while attracting great interest of research and development in this area.

Nanometer (nm) is the second smallest micron unit of measurement, a nanometer is a millionth millimeter, namely nanometer, which is one billionth of a meter. Nano-silver is the use of cutting-edge nanotechnology silver nano, nanotechnology have enabled the state of nano silver sterilization ability to produce a qualitative leap, little nanosilver can have a strong bactericidal effect, can kill in minutes Death 650 kinds of bacteria, broad-spectrum bactericidal without any resistance, to promote wound healing, cell growth and repair of damaged cells without any toxicity, skin irritation also did not find any, which gives wide Application to antibacterial nano silver has opened up broad prospects, is the latest generation of natural antibacterial agent, nano-silver sterilization has the following characteristics:
Broad-spectrum antibiotic

Silver nanoparticles directly into the cell and oxygen metabolizing enzymes (-SH) combine to make cell suffocated unique mechanism of action, can kill most bacteria in contact with, fungi, mold spores and other microorganisms. After eight domestic authorities found: their drug-resistant pathogens, such as E. coli, resistant Staphylococcus aureus resistant Pseudomonas aeruginosa, Streptococcus pyogenes resistant enterococci, anaerobic bacteria, which are full of antibacterial activity; surface burns and trauma of common bacteria such as Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Candida albicans and other G +, G- pathogens have a bactericidal effect; Chlamydia trachomatis, a sexually transmitted disease caused by Neisseria gonorrhoeae also has a strong bactericidal effect.

An antibiotic can kill about six kinds of pathogens, and nano-silver can kill hundreds of pathogenic microorganisms. Kill bacteria, fungi, trichomoniasis, branch / chlamydia, gonorrhea, strong bactericidal effect of antibiotic resistant bacteria have the same role in the killing!
Potent bactericidal

It found, Ag 650 kinds of bacteria can kill within minutes. Nano silver particles and pathogens in the cell wall / membrane-bound, directly into the cell and quickly combine with oxygen metabolizing enzyme thiol group (-SH), inactivating the enzyme, blocking the respiratory metabolism to suffocate it. Unique sterilization mechanism, making silver nanoparticles at low concentrations can rapidly kill pathogens.
Permeable

Silver nanoparticles with superior permeability, can rapidly penetrate the subcutaneous 2mm sterilization, common bacteria, stubborn bacteria, resistant bacteria as well as the deeper tissue infections caused by fungi have a good bactericidal effect.
Repair and regeneration

Nano-silver can promote wound healing, promoting repair and regeneration of damaged cells, to rot myogenic, anti-inflammatory improve microcirculation trauma to surrounding tissue, effectively activate and promote the growth of tissue cells, accelerate wound healing and reduce scarring generated.
Antibacterial lasting

Silver nanoparticles use patented technology, outer layer of protective film can be gradually released in the human body, so anti-bacterial effect.
No drug resistance

Nano-silver is a non-antibiotic agents: nano-silver can kill a variety of pathogenic microorganisms, more than antibiotics, antibacterial mechanism of silver nanoparticles unique 10nm size can quickly kill bacteria directly to the loss of reproductive ability, therefore, can not produce the next generation of drug resistance, can effectively avoid drug resistance and cause recurrent permanently.

Silver used in modern medicine
In 1884, the German obstetrician F. Crede (Claude), the concentration of 1% silver nitrate solution was dropped in the eyes of newborns to prevent blindness caused by neonatal conjunctivitis, infant blindness prevalence dropped from 10% 0.2 percent, until today, many countries still using Crede prophylaxis.

In 1893, C. Von Nageli (Nag column) through a systematic study, first reported in the metal (especially silver) bacteria and other lower organisms lethal effect, so there may be a silver disinfectant. Since then, the use of silver into the modern era.

Silver used in modern medicine in many forms, including:
(1) silver: 0.5% silver nitrate standard solution for treating burns and wounds; 10-20% of the silver nitrate solution applied, can be used for the treatment of cervical erosion.
(2) Silver sulfadiazine: Columbia University Charles L. Fox (Fox) professor and sulfadiazine silver compound, silver sulfadiazine generated activity than the individual sulfa strong activity at least 50 times. 1968, silver sulfadiazine (Sulfadiazine Silver) introduced to the market, because of its variety of bacteria, fungi and efficient role in the killing has, naturally, painless way to fully repair the wound site without skin grafting, has become the treatment of trauma ( such as burn) important drugs. It has now been included in the national basic medical insurance drug list.
(3) colloidal silver or silver protein: an effective topical anti-infective substances, colloidal silver can be used for gynecological sterilization.
(4) silver plated materials: silver, founder of the research, AB Flick (Fleck), Dr. Silver has developed a product that is coated with a layer of silver on the bandage, used as a dressing. Inspired by him, people use silver antimicrobial resistance, have developed a silver-plated sutures, silver catheter. Currently the United States has a dozen silver-containing products, as a medical device received FDA marketing approval, including silver dressings, silver gelatin, silver powder and other types of medical products.

Related reading: Silver Nanoparticles Antimicrobial aluminum oxide nanopowder

The Nanotechnology of Carbon Nanotubes

Multi walled carbon nanotubes can appear either in the form of a coaxial assembly of SWNT similar to a coaxial cable, or as a single sheet of graphite rolled into the shape of a scroll.The diameters of MWNT are typically in the range of 5 nm to 50 nm. The interlayer distance in MWNT is close to the distance between graphene layers in graphite.MWNT are easier to produce in high volume quantities than SWNT. However, the structure of MWNT is less well understood because of its greater complexity and variety. Regions of structural imperfection may diminish its desirable material properties.

The challenge in producing SWNT on a large scale as compared to MWNT is reflected in the prices of SWNT, which currently remain higher than MWNT.SWNT, however, have a performance of up to ten times better, and are outstanding for very specific applications.

Fullerenes and carbon nanotubes (CNTs) are two closely related carbon materials. While fullerenes have bucky-ball structure, CNTs are stripes of graphite rolled up seamlessly into tubes (cylinders). The carbon atoms in a nanotube are arranged in hexagons, similarly to the arrangement of atoms in a sheet of graphite. The electronic properties are fully determined by its helicity (chirality) and diameter. They can have both metallic and semiconducting properties. The typical dimensions of a single wall CNT are: 1 nm in diameter and length of few micrometers. On the other hand, multi-walled CNTs can have diameters up to 100 nm. Recently, super long nanotubes with length of around 1 cm were successfully synthesized.

CNTs are produced by a variety of methods. The most common methods include chemical vapor deposition (CVD), electric arc-discharge, laser ablation of a carbon target, etc. Aligned (forest-like) nanotubes can also be synthesized. Aligned CNTs provide a well-defined structure for some applications. For example, high power density supercapacitors can be built using locally aligned nanotube electrodes.

CNTs play important role in the developing field of nanotechnology. Their excellent electronic transport properties make them good candidates for building blocks in nanoelectronics. The high aspect ratio of nanotubes is favorable in applications based on field emission, like flat panel displays and lamps. Furthermore, the strong mechanical properties and high thermal stability of CNTs improve the properties of matrix materials such as polymers or ceramics. Nanotubes have also been used as an alternative to currently used fillers (e.g. carbon black) to facilitate electrostatic dissipation by increasing the conductivity of polymers. Other studies have been directed towards improving the conductivity of already conducting polymers, thus resulting in a more conductive material.

As already mentioned, the properties of CNTs are fully determined by their exact atomic structure. Thus, in order to build a precise nanotube-based nanoelectronic device with well-defined properties, it is crucial to control the positioning and the atomic (electronic) structure (helicity) of nanotubes already in the growth phase. Some major hurdles still need to be overcome in this field. However, there are many applications where CNT networks are used instead of individual nanotubes. In these cases the properties of the whole nanotube network are determinative. These applications are very promising and a long line of nanotube-based materials and devices are already in the pipeline.

Related reading: Copper Oxide Nanoparticles ruthenium metal powders

Do You Know Gold Nanoparticles?

Ultrasmall, crystalline, and dispersible NiO nanoparticles are prepared for the first time, and it is shown that they are promising candidates as catalysts for electrochemical water oxidation. Using a solvothermal reaction in tert-butanol, very small nickel oxide nanocrystals can be made with sizes tunable from 2.5 to 5 nm and a narrow particle size distribution. The crystals are perfectly dispersible in ethanol even after drying, giving stable transparent colloidal dispersions. The structure of the nanocrystals corresponds to phase-pure stoichiometric nickel(ii) oxide with a partially oxidized surface exhibiting Ni(iii) states. The 3.3 nm nanoparticles demonstrate a remarkably high turn-over frequency of 0.29 s–1 at an overpotential of g = 300 mV for electrochemical water oxidation, outperforming even expensive rare earth iridium oxide catalysts. The unique features of these NiO nanocrystals provide great potential for the preparation of novel composite materials with applications in the field of (photo)electrochemical water splitting. The dispersed colloidal solutions may also find other applications, such as the preparation of uniform hole-conducting layers for organic solar cells.

Gold has always been the one precious material people like best. Due to its intrinsic value, buying the yellow metal has been seen as a good way of securing one’s money. Big players on the market prefer it in the form of bullion, whereas small investors settle themselves with purchasing fine pieces of gold jewelry. In modern times though, gold has ceased to be merely a safe investment opportunity or exchange currency. As a result of extensive research and continuous development, it has been discovered that gold can be used successfully for scientific purposes as well.

One of these special uses of gold refers to what is called ‘nanogold’, ‘colloidal gold’ or ‘gold nanoparticles’, i.e. sub-micrometer-sized particles of gold dispersed in a fluid, usually water. The existence of these special gold particles has been known to people since ancient times, yet it was in 1850s that scientists focused their full attention on them. The main reasons behind this interest for gold nanoparticles are their extraordinary optical, electronic and molecular-recognition properties. These properties allow for the gold nanoparticles to have applications in various fields, including electron microscopy, electronics,Nickel Oxide Nanoparticles,nanotechnology and materials science.

Biological electronic microscopy is one of the areas where gold nanoparticles have been extensively used as contrast agents. They can be associated with many traditional biological probes such as antibodies, lectins, superantigens, glycans, nucleic acids and receptors. Because gold particles having various sizes can be easily spotted in electron micrographs, it is possible for multiple experiments to be conducted simultaneously.

In what concerns the domain of health and medical applications, gold nanoparticles have been successfully used as part of the treatment for some diseases. Rheumatoid arthritis was among the first conditions where use of gold was part of the therapy since it has been found that gold particles implanted near the arthritic hip joints relieve pain. There have also been some in vitro experiments which have proved that gold nanoparticles combined with microwave radiation can destroy the beta-amyloid fibrils and plaque which are characteristic for Alzheimer’s disease. But perhaps the most important medical purpose for which gold nanoparticles can be used is the localization and treatment of cancer. It has already been shown that by directing gold nanoparticles into the nuclei of cancer cells, they can only not hinder them from multiplying, but also kill them.

As we can see, for the modern society of today gold has become more than just merchandise and by buying it we do not just secure our investments, but our health as well. With the help of science, researchers have been able to explore the great latent potential gold has. Just like the professionals in the business whose opinion is of great value for the buyers, specialists in important areas such as medicine can testify about gold’s benefits too.

Related reading: silicon dioxide nanoparticles antibacterial coating nano silver

Standards For Nano-Enabled Industries

Single-walled Carbon Nanotubes (SWNTs) are nanometer-diameter cylinders consisting of a single graphene sheet wrapped up to form a tube. Since their discovery in the early 1990s[1, 2], there has been intense activity exploring the electrical properties of these systems and their potential applications in electronics. Experiments and theory have shown that these tubes can be either metals or semiconductors, and their electrical properties can rival, or even exceed, the best metals or semiconductors known. Particularly illuminating have been electrical studies of individual nanotubes and nanotube ropes (small bundles of individual nantoubes). The first studies on metallic tubes were done in 1997[3, 4] and the first on semiconducting tubes in 1998[5]. In the intervening five years, a large number of groups have constructed and measured nanotube devices, and most major universities and industrial laboratories now have at least one group studying their properties. These electrical properties are the subject of this review. The data presented here are taken entirely from work performed by the authors (in collaboration with other researchers), but they can be viewed as representative of the field.

Like the California gold rush of 1849, the emergence of nanotechnology presents both an enormous opportunity and enormous risks. Just as new techniques, rewards, and challenges emerged during the gold rush era, nanotechnology exploration will inevitably lead to the development of new tools to achieve new breakthroughs, the opportunity for creating enormous wealth, and unfortunately, the potential for environmental, health, and safety disasters. Although Single-walled Carbon Nanotubes undoubtedly will create disruptive technologies that will spin off many new jobs, it also has the potential for displacing existing workers unprepared to take on these new technologies.

The first fruits of nano R&D are already being harvested as disciplines as diverse as materials, electronics, biotechnology, and computing rush to exploit nanotechnology’s potential. Many consumers have already become familiar with nano-derived products, such as improved types of cosmetics, fabrics, paints, plastics, or personal electronics.

Nanotechnology offers all-but-unlimited opportunities for those who can develop the next exotic material or electronic component that is cheaper, better, and faster than today’s CMOS devices. It also holds huge promise for those who will create the tools needed to produce these materials and devices. Despite the recession, corporate and government labs around the world continue to invest billions in nanoscience research. Unfortunately, unless the public and private sectors work in cooperation to develop standardized test methods and guidelines, the transition from the laboratory to the marketplace could create many of the same problems as the California gold rush did, particularly for the environment. However, with careful planning, we can have the appropriate terminology, test measurement methods, reporting, and environmental, safety, and health safeguards in place early enough to ward off serious consequences.

Why Are Standards So Important?

Very simply, standards are crucial to achieving a high degree of interoperability, creating order in the marketplace, simplifying production requirements, managing the potential for adverse environmental impacts, and most important, ensuring the safety and health of those developing and using the next generation of materials and devices.

Standards for nano terminology, materials, devices, systems, and processes will help establish order in the marketplace. For R&D researchers and engineers, standards make it possible to make measurements and report data consistently in a way that others can understand clearly. Those responsible for developing standards will be at the forefront in understanding the need for, and creation of, new characterization tools, processes, components, and products to help jump-start this emerging field. This kind of approach can represent a competitive tool in global markets. Creating a standard in advance of the release of a new technology allows both manufacturers and consumers to gain greater confidence in it, promoting greater acceptance and faster adoption.

The following examples illustrate the importance of early standards development.

Carbon Nanotubes

Although some of the more sophisticated electronics and medical advances scientists have envisioned are still years down the road, the development of some nanoscale raw materials, particularly carbon nanotubes (CNTs), is already well underway. Years before CNTs were commercially available, industry observers heard how they would bring significant performance advantages to electronics, enhance materials to make them stronger and lighter, and might even be part of the solution to our energy problems. This industry buzz, plus the massive private and public sector investments in nano research, built interest at every level. In 2000, the late Dr. Richard Smalley spun off his work to form Carbon Nanotechnologies Inc. (now Unidym) with the goal of commercializing his method of producing large batches of high-quality nanotubes. Unfortunately, at that point, there were no manufacturing standards or guidelines for ensuring the reproducibility of the company’s manufacturing process. There were also no known test and measurement guidelines for verifying the reproducibility and proving results on a large scale. Given this, how would the company have assured its customers of the quality of its products? Or just as important, how could customers choose confidently among various manufacturers’ CNTs based on their product description?

Buying carbon nanotubes isn’t like buying baseballs or bananas-it’s impossible to judge their quality just by looking at them. En masse, CNTs basically look like a pile of soot. How can incoming inspectors verify what they have received? How do they know whether they are single-walled or multi-walled tubes? Given the different species of carbon nanotubes now available (tubes that are metal or semiconducting, based on their chirality), most companies looking to purchase nanotubes would have had no basis on which to ensure that what they received is what they ordered. However, with a standard in place, customers have the tools needed to verify the materials they are purchasing.

Related reading: silicon dioxide nanoparticles multi walled carbon nanotubes

Do You Know Antibacterial Silver Nanoparticles?

The antimicrobial activity of Silver Nanoparticles Antimicrobial against E. coli was investigated as a model for Gram-negative bacteria. Bacteriological tests were performed in Luria–Bertani (LB) medium on solid agar plates and in liquid systems supplemented with different concentrations of nanosized silver particles. These particles were shown to be an effective bactericide. Scanning and transmission electron microscopy (SEM and TEM) were used to study the biocidal action of this nanoscale material. The results confirmed that the treated E. coli cells were damaged, showing formation of “pits” in the cell wall of the bacteria, while the silver nanoparticles were found to accumulate in the bacterial membrane. A membrane with such a morphology exhibits a significant increase in permeability, resulting in death of the cell. These nontoxic nanomaterials, which can be prepared in a simple and cost-effective manner, may be suitable for the formulation of new types of bactericidal materials.

There are some bacteria that are not effectively killed by the conventional antibiotics including many strains of gram-negative bacteria. However the innovative world of science and the need of developing an effective way to cope with this situation has lead scientist to manage a new technology in this regard.

Rani Pattabi and her colleagues at Mangalore University, explains in the international journal of nanoparticles that an electron beam when blasted on a silver nitrate solution can generate nanoparticles.

These particles are shown to be effective against gram-negative species that are not affected by conventional antibacterial agents.

The researchers in India also pointed that these silver nanoparticles are effective against gram-positive bacteria, such as resistant strains of Staphylococcus aureus and Streptococcus pneumoniae and also effective for treating gram-negative Escherichia coli and Pseudomonas aeruginosa.The problem that is threatening human health is resistance to the existing conventional antibiotics. Therefore the chemists all around the world are desperately trying to develop newer compounds that can easily be bactericidal for strains such as MRSA (methicillin or multiple-resistant Staphylococcus aureus) and E. coli O157.

Since the ancient times, silver has been renowned for its bactericidal activities.

Therefore a technological advancement in the use of silver means a major step forward and a promise for a wide range of applications of silver as anti bacterial agent in the times where antibiotic resistance is proving to be an obstacle for anti bacterial use. Thus the emergence of silver nanoparticles and other such bacteriostatic agents have become a new industrial revolution.

The experimentation involving the radiations to split the silver compounds to release silver ions that will clump together and form nanoparticles, have been taken as a challenge by the researchers. The target was in fact to get a new approach that avoids the need for costly and hazardous reducing agents and that these can be used to get particles of a controlled size that controls its properties as well.

So Pattabi and colleagues used electron beam technology to irradiate silver nitrate solutions in a biocompatible polymer that was polyvinyl alcohol, to form silver nanoparticles.

The Preliminary tests have shown that silver nanoparticles produced by this straightforward, non-toxic method are indeed highly active against S. aureus, E. coli, and P. aeruginosa.

Now we can imagine that our shoes, socks or even the keyboard we are using may be impregnated with silver nanoparticles that can kill some bacteria and might as well prevent the spread of infection among computer users.

These can be the frontline defenses such as these environmentally benign and cost-effective antibacterial compounds and these can prevent spreading the infections through contact with computer keyboard, phones and other devices.

Related reading: Copper Oxide Nanoparticles silicon dioxide nanoparticles