Silver or Silver Nanoparticles

Gold nanoparticles have good stability, small size effect, surface effect, an optical effect and unique biological affinity, in many areas show a potential application, aroused great interest in science and technology workers, scientists have synthesized a silver (Ag) nanocluster that is virtually identical to a gold (Au) nanocluster. On the outside, the silver nanocluster has a golden yellow color, and on the inside, its chemical structure and properties also closely mimic those of its gold counterpart. The work shows that it may be possible to create silver nanoparticles that look and behave like gold despite underlying differences between the two elements, and could lead to creating similar analogues between other pairs of elements.

The researchers, led by Osman Bakr, Associate Professor of Materials Science and Engineering at King Abdullah University of Science and Technology (KAUST) in Saudi Arabia, have published the paper in a recent issue of the Journal of the American Chemical Society.

“In some aspects, this is very similar to alchemy, but we call it ‘nano-alchemy,'” Bakr told Phys.org. “When we first encountered the optical spectrum of the silver nanocluster, we thought that we may have inadvertently switched the chemical reagents for silver with gold, and ended up with gold nanoparticles instead. But repeated synthesis and measurements proved that the clusters were indeed silver and yet show properties akin to gold. It was really surprising to us as scientists to find not only similarities in the color and optical properties, but also the X-ray structure.”

Like all chemical elements, silver and gold are defined by their number of protons: silver has 47, and gold has 79. The work here doesn’t change the number of protons in an atom of silver; otherwise it would no longer be considered silver. Instead, the researchers synthesized a nanocluster of 25 silver atoms, along with 18 other molecules called “ligands” that surround the silver atoms. The entire negatively charged, silver-based complex ion has the chemical formula [Ag25(SPhMe2)18]-.

Although a few other silver nanoparticle have been synthesized in recent years, this is the first silver nanocluster that has a matching analogue in gold: [Au25(SPhMe2)18]- has previously been reported. Besides both nanoclusters having 25 metal atoms and 18 ligands, they also both have all of their atoms and electrons arranged in almost exactly the same way.

In their study, the researchers performed tests demonstrating that the silver and gold nanoclusters have very similar optical properties. Typically, silver nanoclusters are brown or red in color, but this one looks just like gold because it emits light at almost the same wavelength (around 675 nm) as gold. The golden color can be explained by the fact that both nanoclusters have virtually identical crystal structures.

Related reading: Silver Nanoparticles Antimicrobial antibacterial coating nano silver

Excellent Quality Nano Diamond Powder

Excellent quality nano diamond powder for grinding and polishing. Outstanding wearability,anti-causticity and thermal conductivity,stable high dispersibility,superhigh purity. Our nano diamond is achieved from the dissociative carbon in super high pressure and temperature during the detonation by the oxygen-negative explosive. The nano diamonds, with 5 – 20 nanometer basic sizes, have sphere shape and functional group of oxygen and nitrogen on the surface. It possesses characteristics of both diamond and nano functional made of, super finish polishing property.

Outstanding wearability, anti-causticity and thermal conductivity.

Stable high dispersibility.

Superhigh purity, main element impurity below 30 ppm.

Various dispersible products.

Super polishing effect with minus 0.8 nm surface roughness. Product classification:. Black powder slurry series in different cluster size distributions. Black powder series with different nanodiamond contents. Grey and superfine powder series of nanodiamonds. Black powder slurry series in different cluster size distributions. Accurate nano powders at different cluster size distributions. Available sizes of nano diamond.

Leveraging on our vast industry experience, we offer an extensive range of Nano Diamond Powder that has excellent wear resistance corrosion resistance. In order to suit the various need of customers, the offered diamond powder is in polishing and grinding hard drive glass, magnetic head & can significantly improve friction performance extend life. Besides this, our offered diamond powder is available from us in diverse packaging options. Features: Good thermal conductivity,Super- smooth polishing effective.

Related reading: antibacterial coating nano silver silicon dioxide nanoparticles

Applications In Chemistry of Copper Nanowires

Copper nanowire, which can greatly reduce the potential display manufacturing cost of mobile phones, electronic readers and iPad, and can help scientists build foldable electronic products and improve the performance of solar cells, has entered the commercial stage of manufacture.

In an ingenious application of food chemistry more commonly associated with the searing of steak or baking of bread, scientists in Singapore have developed a green synthesis for well-defined copper nanowires (CuNWs).

Films made from silver or copper nanowires are promising candidates, exhibiting high conductivity and optical transparency in addition to being flexible. Food chemistry is a much talked about topic nowadays and an interesting field to venture into for young aspirants. The applications of food chemistry are ingenious and widespread. Interestingly many chemical compounds have a wide application in the field of food chemistry that scientists are never tired experimenting with different chemical compounds.

Scientists in Singapore have developed a green synthesis for well-defined Copper Nanowires. They are attractive as copper is 100 times cheaper than silver and 1000 times more abundant. Copper Nanowires can be synthesized in electric pressure cooker and they have a wide application in Conductive Networks. Copper Nanowires hold a great promise for the fabrication of low-cost transparent electrodes.

However, their current synthesis is mainly performed in aqueous media with poor nanowire dispersibility. We report herein the novel synthesis of ultralong single-crystalline Copper nanowires with excellent dispersibility, providing an excellent candidate material for high-performance transparent electrode fabrication.
Applications of Copper nanowires

Most printed electronics applications rely on some kind of ink formulated with conductive materials. Silver nanowires, due to their superior conductivity and intrinsic flexibility, have become a popular choice for fabricating the required flexible and stretchable electrodes.

The use of copper which is much cheaper and more abundant as an alternative electrode material to silver would dramatically reduce the cost of these nanowire materials. Despite these advantages, Copper Nanowires face a serious bottleneck for future practical use in flexible and stretchable optoelectronics, although they are nearly as conductive as silver, this conductivity is not stable.

Researchers have successfully shown how conductive Copper Nanowires elastomer fuses with superior performance stability even under conditions of stretching, twisting, oxidation and bending. These nanoproducts have made the applications of science very interesting and hold a major significance in day to day lives.

Related reading: Copper Oxide Nanoparticles antibacterial coating nano silver

About Carbon Nanotube for Surgery Wound Healing

Carbon nanotubes have many unique properties – they are so many things almost perfect material. They are not only 50 times stronger than steel, they are also lighter by a very substantial. You know, scientists have discovered that a very interesting; carbon nanotubes, graphene coating, the introduction of certain enzymes in the blood to break their bonds, is the blood of animals and humans.

Now then, not long ago, we are talking about this in our Internet style think tank, and I came up with a new innovation, idea, and potential invention in the bioscience and life sciences industry sector. A carbon nanotube patch or carbon nano-tube stitches for Post Surgery wound healing.

You see, Carbon Nano Tubes are decayed by enzymes in blood, and that includes members of the human species or other Earth species with blood, so it is perfect for veterinarians or hospital surgeons. How would this work you ask? Well let me explain it to you;

Since blood causes carbon nano tubes to decay, over a two or three day – as the wound healed the carbon nanotubes would dissolve. Since carbon is part of the human body, and much of any animal species on this planet is carbon based, it wouldn’t hurt anything. In fact, if you coated the carbon nanotube stitches with some sort of antibiotic, you could also solve that problem. Please consider all this.

The carbon nanotube stitches would be shaped like a spring, and you would place a device over the wound pressing the flesh together, and trying to align the skin. Next you would turn on the device, and it would spin this spring forward along the wound, as the front of the spring makes a path for the rest of the spring as it would whirl and twirl itself along and close up the wound.

Lance Winslow is the Founder of the Online Think Tank, a diverse group of achievers, experts, innovators, entrepreneurs, thinkers, futurists, academics, dreamers, leaders, and general all around brilliant minds. Lance Winslow hopes you’ve enjoyed today’s discussion and topic.

Related reading: Single-walled Carbon Nanotubes Silver Nanoparticles Antimicrobial

Silicon Nanoparticle Used In The Paint 

Nano-silicon particles have a larger surface area, colorless and transparent; a lower viscosity, penetration ability, good dispersion properties. Silicon nano silica particles are nanoscale, its size is less than the visible light wave length, do not form the reflection and refraction phenomena visible, it will not make the paint surface matting.

Uses of silicon dioxide nanoparticles
1. reaction with organic matter, as silicone polymer raw material
2. Preparation of metallic silicon by purifying polysilicon.
3. The metal surface treatment.
4. Alternative nano carbon or graphite as lithium battery cathode materials, lithium battery capacity greatly improved.
5. The semiconductor microelectronic packaging materials.
6. automotive beauty products: increase gloss, fill minor cracks surface

Perfect application of nanotechnology in paint products, to include interior, exterior, antibacterial latex paint, primer and dozens of varieties. Product performance has been greatly improved: expose nanoscale some amphiphobic, sticky water, non-stick oil, resistant to wash up on a million times; superior adhesion and flexibility, not hollowing, can not afford to skin, not cracking; nanomaterials ultraviolet shielding function, greatly improving the resistance to aging, long-term does not fade, the service life of ten years; unique optical catalytic self-cleaning function, anti-mildew sterilization, clean air. The coating applications:

1, exterior paint if users need to improve the coating of anti-aging, scrub, anti-staining properties, for high-grade paint, recommendations, or used in combination alone. The former dosage is 1-5%, which increase the amount of nano-titanium dioxide 0.5-3% 0.5-2% nanometer silicon, for middle and low coatings, nanomaterials dosage is 1-2%, mainly with Nano silicon, no or little use of nano titanium dioxide. In general, the amount of material costs as allowable range Nei Nami high percentage of costs under strict control, it is recommended customers through testing to determine the optimum amount of nano-materials added to make it has a very good price.

2, the interior wall paint if users have higher indoor air quality requirements, the available nano-titanium dioxide powder or rice anion to purify the air with antibacterial nano materials or nano-zinc oxide to enhance the antibacterial, antifungal properties. Users can be improved through the use of nano-titanium dioxide and nano-silica-bound leveling, anti-staining properties and thickening properties of the coating, the recommended dosage (1-3%), alone, composite can, using negative ions and anatase nano titanium dioxide coating can improve the ability to purify the air.

3, a special paint
1.antistatic coating, antistatic requirements for rooms and other high places;
2.wear-resistant coatings, nano-zirconia, cobalt oxide nanoparticles can significantly improve the coating hardness and wear resistance;
3.corrosion-resistant coatings, nano silica, nano-titanium dioxide, nano-zinc oxide, alone or in combination can improve the corrosion resistance of the coating, particularly against sea water corrosion;
4.fire retardant paint, if there are requirements for fire performance coatings, nano-magnesium oxide is recommended to add an amount of 0.5-5%, respectively.

Related reading: nano diamond powder Single-walled Carbon Nanotubes

Synthesis of Copper Nanoparticles

Copper Oxide Nanoparticles have great interest because their optical, catalytic, mechanical and electrical properties. Copper is a noble metal such as Au and Ag a good alternative material, because it is highly conductive and than they is much more economical. Copper plays due to its excellent electrical conductivity plays an important role in electronic circuits. Copper nanoparticles are cheap and their properties can be controlled according to the synthetic method. Further, in the catalyst, the nanoparticle has a higher efficiency than the particles. Copper nanoparticles are synthesized by different techniques. The most important for the synthesis of copper nanoparticles are chemical methods such as chemical reduction, electrochemical techniques, photochemical reduction and thermal decomposition. Copper nanoparticles can be easily oxidized to form copper oxide. To avoid oxidation, these methods are usually carried out in a non-aqueous medium in low precursor concentration, and under an inert atmosphere (argon, nitrogen).

One of the most important methods for the synthesis of copper nanoparticles is the reduction chemical method. In this technique a copper salt is reduced by a reducing agent such as polyols, sodium borohydride, Hydrazine, Ascorbic acid, hypophosphite . In addition, it is used from capping agents such as Polyethylene glycol and poly (vinylpyrrolidone) . Some of the chemical reducing reactions can be carried out at room temperature. Salzemann et al used microemulsion method to synthesize nanoparticles of copper with size of 3-13 nm. Copper nanoparticles were produced by the polyol method in ambient atmosphere. The obtained nanoparticles were confirmed by XRD to be crystalline copper. SEM study shows that sizes of particles produced were 48±8 nm. Colloidal copper with particle sizes of 40–80 nm has been reported from reduction with sodium borohydride in aqueous solution at room temperature. The copper nanoparticles were stabilized by starch. In 2008, copper nanoparticles were synthesized by the reduction of Cu2+ in solutions of poly(acrylic acid)-pluronic blends results in a stable sol of metallic copper with a particle size below 10 nm. Reduction of copper ions by sodium borohydride in the presence of sodium polyacrylate was reported. Copper nanocrystals sizes were 14 nm. Chatterjee et al. presented a simple method for synthesis of metallic copper nanoparticles using Cucl2 as reducing agent and gelatin as stabilizer with a size of 50-60 nm.

Chemical reduction method is one of the micro-emulsion technology. Microemulsion containing at least three components, i.e. polar phase (typically water), non-polar phase (usually oil) and surfactant isotropic, macroscopically homogeneous and thermodynamically stable solution. Copper nanoparticle synthesis by reducing the non-ionic oil in water used to NaBH 4 (W / O) microemulsion of aqueous cupric chloride solution to achieve. Solanki and so on. Microemulsion reported synthesis of copper and copper sulfide nanoparticles. X-ray diffraction analysis confirmed that nanoparticles of metallic copper present. In 2013, facile synthesis of copper and copper oxide nanoparticles size adjustable proposed by Kumar et al. They found that the reduction with hydrazine hydrate gives copper nanoparticles in an inert atmosphere of nitrogen, and under aerobic conditions the reaction of sodium borohydride, to give copper (II) oxide nanoparticles. In another study, the copper salt is dissolved in dioxane / -AOT solution and the hydrazine hydrate under vigorous stirring reduced. Nano colloid size of 70-80 nm.

Related reading: silicon dioxide nanoparticles nano diamond powder

How Using Gold Nanoparticles Develop Novel Nanosurgery Technique?

Nanotechnology in today’s society are more and more mature, the future development of new technologies provide a higher standard of living, the scientists are trying hard to explore new areas. A research team led by Professor Michel Meunier from the Polytechnique Montréal has developed a novel transfection technique using gold nanoparticles and a femtosecond laser to change cancer cells’ genetic material.

In this technique, silver nanoparticle and gold nanoparticles are deposited on the cells to concentrate the laser energy and enable it conduct a nano-scale surgery in a highly accurate non-invasive manner. This method is capable of changing the gene expression in the cancer cells to slow down their movement, thus preventing metastases formation. This pioneering achievement in nanosurgery paves the way to advance cancer treatments and other innovative medical applications.

This technique is a promising replacement for traditional cellular transfection techniques like lipofection. In the experiment on malignant human melanoma cells, this method showed an optoporation efficacy of 70% and a transfection performance three folds better than that of lipofection treatment. Moreover, contrary to traditional treatments that destroy the cells’ physical integrity, the novel technique ensures cellular viability with below 1% of toxicity.

This significant scientific advancement opens the door to develop promising applications such as novel therapeutic methods in cardiology, neurology, and oncology. The Polytechnique Montréal team works in partnership with scientists from the Department of Medicine at the McGill University Health Centre.

This project is funded by the Deutsche Forschungsgemeinschaft, the Canadian Institutes of Health Research, the Canada Research Chairs program, the Canada Foundation for Innovation, and the Fonds Québécois de la Recherche sur la Nature et les Technologies.

The research team has reported their findings in the journal Biomaterials.

Related reading: Silver Nanoparticles Antimicrobial aluminum oxide nanopowder

Nanoparticles In Modern Life

Nano-materials with traditional materials do not have the bizarre or unusual physical and chemical properties, such as the original conductive copper to a nanometer limit is not conductive, the original insulation silica, crystal, etc., when in a nanoscale boundaries electrical conduction. This is due to nano-materials with small particle size, surface area, surface energy is high, a large proportion of surface atoms, etc., as well as its unique three effects: surface effect, small size effect and macroscopic quantum tunneling effect.

Nowadays, nanoparticles, one of the “building blocks” of nanotechnology are all around us and have been with us throughout our history. Electron micrograph of gold nanoparticles is a snap shot of tiny gold crystals that are 1/10,000th the diameter of a human hair. In every aspect of our day to day lives, from the size of our personal electronic devices to the way diagnose and treat cancer; all part of the promised nanotechnology revolution, nanoparticles may soon transform it. The very word “nanotechnology” seems to suggest something alien; something that belongs far in the future or in the realm of our favorite sci-fi movies.

Gold nanopowders were with us when human beings began making their first tools, and they are present in products we buy at the grocery store every day. They largely flew under the radar until electron microscopes become commonplace several decades ago, but now, the more we turn our microscopes on everyday objects, the more nanoparticles we seem to find.

Even the most seemingly mundane objects can give rise to nanoparticles; detecting them is simply a matter of being able to look closely enough to see them (no simple matter for such small materials). You could find nanoparticles in your jewelry box or the drawer with your family’s fanciest silverware.

I got to see this first hand while I was working in the Hutchison lab at the University of Oregon several years ago.1 Some of my colleagues were trying to understand why silver nanoparticles change size and shape so rapidly, even when they are just left in storage on the shelf. Because they saw such rapid changes in the size and shape of silver nanoparticles, they thought to look and see if large every day pieces of silver and copper (Sterling silver forks, earrings, and wires) might give off nanoparticles.2 To test this, they simply left the fork (or any of the other items) on an electron microscopy grid for several hours, then took the fork away, and had a peek at what it had left behind. Surprisingly, they found that the silver and copper items had left silver and copper nanoparticles behind all over the grid; a most elegant demonstration that human beings can come into contact with a variety of nanoparticles, even in our own homes. Forks and earrings are merely the tip of the iceberg, though. Wherever we go during our day-to-day routine we can encounter nanoparticles (both synthetic and natural).

Synthetic nanoparticles (sometimes called anthropogenic nanoparticles) fall into two general categories: “incidental” and “engineered” nanoparticles. Incidental nanoparticles are the byproducts of human activities, generally have poorly controlled sizes and shapes, and may be made of a hodge-podge of different elements. Many of the processes that generate incidental nanoparticles are common every day activities: running diesel engines, large-scale mining, and even starting a fire.

Engineered nanoparticles on the other hand, have been specifically designed and deliberately synthesized by human beings. Not surprisingly, they have very precisely controlled sizes, shapes, and compositions. They may even contain “layers” with different chemical compositions(e.g. a core made out of gold, covered in a shell of silica, and coated with specifically chosen antibodies). Although engineered nanoparticles get more sophisticated with each passing year, simple engineered nanoparticles can be created by relatively simple chemical reactions that have been within the scope of chemists and alchemists for many centuries. This means that long before people could “see” a nanoparticle through an electron microscope, human beings were both deliberately and accidentally generating a wide variety of these materials.

Related reading: Copper Oxide Nanoparticles silicon dioxide nanoparticles

Some Risk of Tiny Nanoparticles

Nanotechnology poses a question for occupational health and safety professionals. Does this technology, and the tiny nanoparticles that are its tools, pose an unintended risk of illness or injury for workers employed in the industry?

National Institute for Occupational Safety and Health in an effort to understand the health and safety consequences of nanomaterials forefront of work. A growing number of scientific publications of large research institutions, including just this week, the address of one type of nano-materials, especially Single-walled Carbon Nanotubes issued a new study, and seek to determine whether they have biological behave like asbestos. That is, if inhaled, is likely to cause irreparable nanotubes and deadly effects, such as those associated with asbestos exposure? Effects of asbestos, including severe lung fibrosis, or scarring, lung cancer, including lung or pleura called mesothelioma, a cancer of the lining.

The question of a comparison between carbon nanotubes and asbestos arises for several reasons. Some varieties of carbon nanotubes are similar in shape to asbestos fibers, and like asbestos, some varieties of carbon nanotubes have been shown in laboratory studies to persist in the lungs of laboratory animals. Some animal studies have even shown effects similar to those of asbestos.

Carbon nanotubes are tiny, cylindrical, manufactured forms of carbon. There is no single type of carbon nanotube. One type can differ from another in terms of shape (single-walled or multi-walled) or in chemical composition (pure carbon or containing metals or other materials). Carbon nanotube exposures can potentially occur not only in the process of manufacturing them, but also at the point of incorporating these materials into polymer composites, medical nanoapplications, and electronics.

The question of whether carbon nanotubes pose a toxicological hazard has been investigated since at least 2003. A challenge has been in determining if carbon nanotube materials used in the workplace have the same characteristics as those associated with biological responses in laboratory studies. Earlier studies used materials with high levels of other forms of carbon such as carbon black and high levels of metal catalyst.

Carbon nanotubes can vary widely in diameter, length, number of layers, and structures. They can also vary widely in surface composition, since certain carbon nanotubes may be “coated” with specific metals or other materials in order to perform specific functions. Also, they can clump together or agglomerate, which can affect their potential for settling in the lungs if inhaled, their ability to penetrate the body’s membranes and consequently move from the lungs to other organs, and their interaction with cells and tissue. Such variations bring an additional degree of complexity to risk assessment analysis for carbon nanotubes.

Asbestos-like responses to carbon nanotubes may not be entirely surprising to scientists, given previous toxicological and epidemiological studies of other biopersistent fibers since such studies show that once fibers are deposited in the lung, they stay there.6 However, questions have been raised about using these research findings for risk assessment analysis in the light of study limitations such as use of model animals, artificial administration methods, and sometimes extremely high doses, which are not representative of those exposures usually present in the workplace environment. Such limitations are not unusual for pioneering scientific studies. They simply mean that at this stage of the research, gaps remain that need to be closed by further study before quantitative risk assessment can be conducted.

Related reading: aluminum oxide nanopowder silicon dioxide nanoparticles

About Antimicrobial Silver Nanoparticles

“Nano Silver” is “silver nanoparticles” is abbreviated or commonly known, refers to the particles of silver atoms, the particle size is generally in the range of 1-100 nm. Silver chunks of material surface having antibacterial properties already well known, the mechanism is located on the surface of the silver atoms in the oxygen environment may be slow oxidation, releasing free silver ions (Ag +), the silver ions with the wall of the bacteria mercapto binding, blocking the bacterial respiratory chain, eventually killing bacteria adhered to the surface of the material. For bulk material is silver, the oxidation process is extremely slow, the amount and rate of release of silver ions very low.

Some people are claiming for Silver Nanoparticles Antimicrobial and solutions to be bad without any proof. Dr. Flavin from the FDA actually stated that silver is in fact safe and can benefit the immune system.

Silver Nanoparticles are tiny particles of silver and are made with a very low application of electricity to pure silver. If the amount of electricity applied is too much, the silver particles will not be nano sized and it’s important that they are nanoparticles because they are small enough to affect viruses.

As far as the claims of silver being “toxic”. Have you ever seen any any effects from holding silver in your hand. The answer to that would be no. If silver were toxic, we couldn’t hold it with our bare hands safely.

In the air there are heavy metals like lead, mercury and cadmium we breathe in all the time. Most of this comes from industry and past weapons testing in the 1940’s and 1950’s. These metals also show up in our water supply. They are very dangerous metals and are proven to be toxic. Yet we are still alive.

Silver is not proven to be toxic at all.
There is a condition called argyria. This condition is real and used by organizations to scare people away. Argyria turns the skin a blue/gray color. This is caused from large amounts of impure silver build up in the skin. Impure silver has other material in it that is not supposed to be there like proteins, other metals, salt, etc.

The truth about argyria is that it is extremely rare. The only way to get argyria is to take poorly made impure silver solutions. Dr. Flavin, a former science assistant to the Director of Toxicology at the FDA, made a signed statement that says pure silver solutions are not toxic and admits that silver nanoparticles, are in fact proven to help the immune system. The link to this document is below.

All silver solutions should be nano sized and made from.999 pure silver. Any good pure silver nanoparticle solution provider will state the silver particle size and the ppm (parts per million) amount on the bottle or they will tell you if asked. Some companies have effectively made silver particles at.8 microns which is smaller than a nanoparticle.

Most providers will recommend taking 1/2 a teaspoon or smaller. Any silver that is not used by the body will be expelled through the urine when taken in small amounts.

Silver nano particles working the body.
The immune system can be preoccupied with other germs and bacteria. Even more if there is a virus present. When the immune system is working overtime, this can weaken the bodies defenses and allow germs, viruses and bacteria to grow since the immune system can’t keep up and kill them. This makes us sick.

The introduction of silver nanoparticles. Silver with positive charge viruses and harmful bacteria like negatively charged. Thus, when silver nanoparticles come into contact, it inhibits the viruses and bacteria, and kill them with natural anti-bacterial silver, antibiotics and anti-viral properties. When viruses and bacteria are put out of commission, which makes the natural immune system to grow and grow, what then take care of the rest. Very simple, but very effective.

Related reading: aluminum oxide nanopowder silicon carbide whisker