Graphene oxide for heavy metal pollution control

Heavy metals generally refer to more than 60 elements with a density of more than 4 or 45 elements with a density of more than 5. However, because the toxicity of different heavy metals in water and soil is very different, in the field of environmental science, people usually pay attention to vanadium, chromium and nickel. , cobalt, copper, zinc, cadmium, tin, mercury, lead and other metal ions. Heavy metal ions can accumulate in the human body and lead to poisoning, cancer and damage to the nervous system, so it is particularly important to do a good job of heavy metal pollution control.

Graphene oxide  is a carbon nano material prepared from natural graphite with a structure similar to carbon nanotubes. Compared with the adsorption capacity of activated carbon, carbon nanotubes and graphene materials for low-concentration lead-containing wastewater, the adsorption capacity of graphene oxide for lead is as high as 800 mg/g, which is much higher than that of activated carbon, which is 60 to 120 mg/g. It has extremely strong regeneration capacity, and the adsorption capacity drops only 5 to 10% after repeated adsorption/elution cycles.

Why does graphene oxide have such a strong heavy metal adsorption capacity? There are two reasons: one is that graphene oxide is a two-dimensional nano material with a thickness of one atomic layer, and its specific surface area can theoretically reach 2600 square meters/g, which is the largest among all carbon nano materials; During the preparation process, a large number of active groups such as carboxyl group, carbonyl group, hydroxyl group, epoxy group, etc. are formed on its surface. Therefore, graphene oxide has the most basic elements required for an excellent adsorbent: a sufficiently large specific surface area and a sufficiently high density of surface functional groups.

The use of graphene oxide material can reduce the discharge concentration of lead-containing wastewater in the lead-acid battery industry from the current 100-1000ppb to 1-10ppb, increase the lead recovery rate to 95%-99%, and reduce the total environmental discharge of lead by 90% compared with the existing technology. %. The achievement can be effectively extended to other heavy metal pollution systems such as cadmium, nickel, arsenic, copper, chromium, and radioactive elements, and has considerable economic and social benefits. https://www.hwnanomaterial.com/

Application of Nano-materials in Plastic Modification

Organic/inorganic nanocomposites formed by inorganic fillers dispersed in a general plastic matrix with nano size are called nanoplastics. In nanocomposites, nanoplastics have excellent properties such as high strength, heat resistance, high barrier properties, flame retardancy and excellent processability because of the nano size effect, large specific surface area and strong interfacial bonding of the dispersed phase, which is a new high-tech new material.

Application of nano materials in plastic modification:

(1) Anti-aging properties of reinforced plastics
The anti-aging performance of polymer directly affects its service life and working environment, especially for agricultural plastics and plastic building materials, which is an indicator that requires high attention. The ultraviolet wavelength in sunlight is 200~400nm, and the ultraviolet light in the 280~400nm band can break the polymer molecular chain, and never make the material age. Nano oxides powder, such as nano alumina(Al2O3), titanium dioxide(TiO2), silicon dioxide(SiO2), etc., have good absorption characteristics for infrared and microwave. Proper mixing of nano-SiO2 and TiO2 can absorb a large amount of ultraviolet rays, thereby making the material anti-aging.

(2) Improve the processing performance of plastics
Some high polymers, such as ultra-high molecular weight polyethylene with a viscosity average molecular weight of more than 150, have excellent comprehensive performance, but due to their extremely high viscosity, it is difficult to form and process, thus limiting their popularization and use. Taking advantage of the small friction coefficient between the layers of layered silicate sheets, the ultra-high molecular weight polyethylene and layered silicate are fully mixed to make nano rare earth / ultra-high molecular weight polyethylene composite material, which can effectively reduce the ultra-high molecular weight polyethylene. The entanglement of ethylene molecular chains reduces the viscosity and plays a good lubricating role, thus greatly improving its processing performance.

(3) Improve the toughness and strength of plastics
The emergence of nano materials provides a new method and approach for the enhancement and toughening of plastics. Small particle size dispersed phase has relatively few surface defects and more unpaired atoms. The ratio of the number of atoms on the surface to the total number of atoms increases sharply with the decrease of the particle size. The crystal field environment and binding energy of the surface atoms are different from those of the internal atoms, and they have great chemical activity. The micronization of the crystal field and the increase of active surface atoms greatly increase the surface energy, so it can be closely combined with the polymer substrate and has good compatibility. When subjected to external force, the ions are not easily separated from the substrate, and can better transmit the external stress. At the same time, under the interaction of the stress field, more micro-cracks and plastic deformation will be generated inside the material, which can cause the substrate to yield and consume a large amount of impact energy, thereby achieving the purpose of strengthening and toughening at the same time. Commonly used nanomaterials include nano silicon carbide(SiC), silicon carbide whiskers(SiC-W), nano aluminum oxide(Al2O3), multi-walled carbon nanotubes(MWCNTs), etc.

(4) The addition of nanomaterials enables the functionalization of metal nanoparticles have heterogeneous nucleation, which can induce the formation of certain crystal forms that impart toughness to the material. Polypropylene was filled with low melting point metal nanoparticles, and it was found that it can act as a conductive channel and strengthen and toughen the polypropylene. At the same time, its low melting point also improves the processing performance of the composite material.

Learn about Thermally Conductive Aluminum Nitride(ALN)

Introduction:
Aluminum nitride AlN is the only stable compound of Al and N, and is the semiconductor with the largest energy gap in the III-V group. Aluminum nitride atoms are combined by covalent bonds, which have good chemical stability and high melting point. At the same time, it has high mechanical strength and good electrical insulation properties. It is a piezoelectric material. It has good injection molding properties, can be used in composite materials, has good matching with semiconductor silicon, good interface compatibility, and can improve the mechanical properties and thermal conductivity and dielectric properties of composite materials.

Product advantages:
The particle size distribution is concentrated,
Good dispersion,
Low metal impurity content,
Low oxygen content,
Low coefficient of thermal expansion,
Strong hydrolysis resistance.

The particle size is complete (nano-level aluminum nitride 100-200nm, 300-500nm, 1-2um, 3-5um, 10um, etc.), and surface treatment can be done according to customer requirements.

Application direction of thermally conductive aluminum nitride powder:
Special for CPU thermal silica gel system;
Special for plastic system;
Special for epoxy resin system;
High thermal conductivity filler of thermal grease and thermal grease;
High thermal conductivity filler of thermal conductive glue, thermal conductive silicone sheet, epoxy resin thermal conductive potting glue;
High thermal conductivity filler of thermally conductive engineering plastics;
Packaging materials, high temperature lubricants, adhesives;
High thermal conductivity fillers for radiators, heat-dissipating paints, and heat-dissipating inks;
Manufacture of insulating and thermally conductive fillers for high thermal conductivity integrated circuit substrates (MCPCB, FCCL);
High thermal conductivity filler of thermal interface material (TIM);
Crucible metal smelting, evaporation boat, ceramic cutting tools, cutting tools, microwave dielectric materials;
Manufacturing high thermal conductivity aluminum nitride ceramic substrates and various ceramic products.

Aluminum nitride ALN powder should be sealed and stored in a dry and cool environment. It should not be exposed to the air for a long time to prevent agglomeration due to moisture, which will affect the dispersion performance and use effect. Surface treatment can be done according to user requirements.

If you need further inquiries about aluminum nitride powder, you can consult our sales staff online.

Comprehensively understand the heat conduction material hexagonal boron nitride HBN

1. What is boron nitride?
Boron nitride is a crystal (BN) composed of nitrogen atoms and boron atoms, and its chemical composition is 43.6% boron and 56.4% nitrogen.

2. What are the classifications of boron nitride?

According to the crystal type, boron nitride is divided into hexagonal boron nitride, cubic boron nitride, rhombohedral boron nitride and wurtzite boron nitride. However, the current research on boron nitride mainly focuses on the two crystal forms of hexagonal boron nitride and cubic boron nitride. Hongwu Nano mainly focuses on the production and supply of hexagonal boron nitride powder, which includes three categories: nanometer, submicron and micron.

3. What are the physical and chemical properties of hexagonal boron nitride?
The crystal structure of hexagonal boron nitride has a similar layered structure of graphite, which is a white powder that is loose, lubricating, easy to absorb, and light in weight. The theoretical density is 2.29g/cm3, the Mohs hardness is 2, and the chemical properties are extremely stable. The product has high humidity resistance, and the temperature can reach 2800℃ when used in nitrogen or argon. It not only has a low thermal expansion coefficient, but also a high thermal conductivity. It is not only a good conductor of heat, but also a typical electrical insulator. The thermal conductivity of BN measured at 300k using high-purity single crystal is 730w/mk.

4. How is hexagonal boron nitride prepared?
There are many synthetic methods for hexagonal boron nitride, but the basic principle is that the boron source and the nitrogen source are heated and refined together. Hexagonal boron nitride is the most commonly used form of boron nitride. Its preparation methods include borax-urea method, hydrothermal synthesis method, chemical vapor deposition method and precursor method.
Compared with the process flow of various methods, it is not difficult to produce boron nitride, but the process conditions of each process have a great impact on the quality and output of the product. In order to reduce costs and improve quality, Hongwu Nano believes that several issues that must be paid attention to through production practices are: the purity and proportion of raw materials, the influence of reaction temperature and time, the influence of washing methods and the influence of drying processes. Of course, production equipment, production environment, etc. will have an impact to a certain extent.

5. What are the main application areas of hexagonal boron nitride?
Evaporation boat ceramic products;
LED thermally conductive packaging materials;
Boron nitride ceramic parts;
Additives for plastics and refractory materials;
Metallurgical stripping machine;
Lubricant
Thermal shielding materials in the aerospace field;
Atomic reactor structural materials;
Cosmetic fillers;
Laser anti-counterfeiting aluminized trademark hot stamping material.

If you need further inquiries about hexagonal boron nitride product information, please contact us online.  https://www.hwnanomaterial.com