Applications In Chemistry of Copper Nanowires

Copper nanowire, which can greatly reduce the potential display manufacturing cost of mobile phones, electronic readers and iPad, and can help scientists build foldable electronic products and improve the performance of solar cells, has entered the commercial stage of manufacture.

In an ingenious application of food chemistry more commonly associated with the searing of steak or baking of bread, scientists in Singapore have developed a green synthesis for well-defined copper nanowires (CuNWs).

Films made from silver or copper nanowires are promising candidates, exhibiting high conductivity and optical transparency in addition to being flexible. Food chemistry is a much talked about topic nowadays and an interesting field to venture into for young aspirants. The applications of food chemistry are ingenious and widespread. Interestingly many chemical compounds have a wide application in the field of food chemistry that scientists are never tired experimenting with different chemical compounds.

Scientists in Singapore have developed a green synthesis for well-defined Copper Nanowires. They are attractive as copper is 100 times cheaper than silver and 1000 times more abundant. Copper Nanowires can be synthesized in electric pressure cooker and they have a wide application in Conductive Networks. Copper Nanowires hold a great promise for the fabrication of low-cost transparent electrodes.

However, their current synthesis is mainly performed in aqueous media with poor nanowire dispersibility. We report herein the novel synthesis of ultralong single-crystalline Copper nanowires with excellent dispersibility, providing an excellent candidate material for high-performance transparent electrode fabrication.
Applications of Copper nanowires

Most printed electronics applications rely on some kind of ink formulated with conductive materials. Silver nanowires, due to their superior conductivity and intrinsic flexibility, have become a popular choice for fabricating the required flexible and stretchable electrodes.

The use of copper which is much cheaper and more abundant as an alternative electrode material to silver would dramatically reduce the cost of these nanowire materials. Despite these advantages, Copper Nanowires face a serious bottleneck for future practical use in flexible and stretchable optoelectronics, although they are nearly as conductive as silver, this conductivity is not stable.

Researchers have successfully shown how conductive Copper Nanowires elastomer fuses with superior performance stability even under conditions of stretching, twisting, oxidation and bending. These nanoproducts have made the applications of science very interesting and hold a major significance in day to day lives.

Related reading: Copper Oxide Nanoparticles antibacterial coating nano silver

About Carbon Nanotube for Surgery Wound Healing

Carbon nanotubes have many unique properties – they are so many things almost perfect material. They are not only 50 times stronger than steel, they are also lighter by a very substantial. You know, scientists have discovered that a very interesting; carbon nanotubes, graphene coating, the introduction of certain enzymes in the blood to break their bonds, is the blood of animals and humans.

Now then, not long ago, we are talking about this in our Internet style think tank, and I came up with a new innovation, idea, and potential invention in the bioscience and life sciences industry sector. A carbon nanotube patch or carbon nano-tube stitches for Post Surgery wound healing.

You see, Carbon Nano Tubes are decayed by enzymes in blood, and that includes members of the human species or other Earth species with blood, so it is perfect for veterinarians or hospital surgeons. How would this work you ask? Well let me explain it to you;

Since blood causes carbon nano tubes to decay, over a two or three day – as the wound healed the carbon nanotubes would dissolve. Since carbon is part of the human body, and much of any animal species on this planet is carbon based, it wouldn’t hurt anything. In fact, if you coated the carbon nanotube stitches with some sort of antibiotic, you could also solve that problem. Please consider all this.

The carbon nanotube stitches would be shaped like a spring, and you would place a device over the wound pressing the flesh together, and trying to align the skin. Next you would turn on the device, and it would spin this spring forward along the wound, as the front of the spring makes a path for the rest of the spring as it would whirl and twirl itself along and close up the wound.

Lance Winslow is the Founder of the Online Think Tank, a diverse group of achievers, experts, innovators, entrepreneurs, thinkers, futurists, academics, dreamers, leaders, and general all around brilliant minds. Lance Winslow hopes you’ve enjoyed today’s discussion and topic.

Related reading: Single-walled Carbon Nanotubes Silver Nanoparticles Antimicrobial

Silicon Nanoparticle Used In The Paint 

Nano-silicon particles have a larger surface area, colorless and transparent; a lower viscosity, penetration ability, good dispersion properties. Silicon nano silica particles are nanoscale, its size is less than the visible light wave length, do not form the reflection and refraction phenomena visible, it will not make the paint surface matting.

Uses of silicon dioxide nanoparticles
1. reaction with organic matter, as silicone polymer raw material
2. Preparation of metallic silicon by purifying polysilicon.
3. The metal surface treatment.
4. Alternative nano carbon or graphite as lithium battery cathode materials, lithium battery capacity greatly improved.
5. The semiconductor microelectronic packaging materials.
6. automotive beauty products: increase gloss, fill minor cracks surface

Perfect application of nanotechnology in paint products, to include interior, exterior, antibacterial latex paint, primer and dozens of varieties. Product performance has been greatly improved: expose nanoscale some amphiphobic, sticky water, non-stick oil, resistant to wash up on a million times; superior adhesion and flexibility, not hollowing, can not afford to skin, not cracking; nanomaterials ultraviolet shielding function, greatly improving the resistance to aging, long-term does not fade, the service life of ten years; unique optical catalytic self-cleaning function, anti-mildew sterilization, clean air. The coating applications:

1, exterior paint if users need to improve the coating of anti-aging, scrub, anti-staining properties, for high-grade paint, recommendations, or used in combination alone. The former dosage is 1-5%, which increase the amount of nano-titanium dioxide 0.5-3% 0.5-2% nanometer silicon, for middle and low coatings, nanomaterials dosage is 1-2%, mainly with Nano silicon, no or little use of nano titanium dioxide. In general, the amount of material costs as allowable range Nei Nami high percentage of costs under strict control, it is recommended customers through testing to determine the optimum amount of nano-materials added to make it has a very good price.

2, the interior wall paint if users have higher indoor air quality requirements, the available nano-titanium dioxide powder or rice anion to purify the air with antibacterial nano materials or nano-zinc oxide to enhance the antibacterial, antifungal properties. Users can be improved through the use of nano-titanium dioxide and nano-silica-bound leveling, anti-staining properties and thickening properties of the coating, the recommended dosage (1-3%), alone, composite can, using negative ions and anatase nano titanium dioxide coating can improve the ability to purify the air.

3, a special paint
1.antistatic coating, antistatic requirements for rooms and other high places;
2.wear-resistant coatings, nano-zirconia, cobalt oxide nanoparticles can significantly improve the coating hardness and wear resistance;
3.corrosion-resistant coatings, nano silica, nano-titanium dioxide, nano-zinc oxide, alone or in combination can improve the corrosion resistance of the coating, particularly against sea water corrosion;
4.fire retardant paint, if there are requirements for fire performance coatings, nano-magnesium oxide is recommended to add an amount of 0.5-5%, respectively.

Related reading: nano diamond powder Single-walled Carbon Nanotubes

Synthesis of Copper Nanoparticles

Copper Oxide Nanoparticles have great interest because their optical, catalytic, mechanical and electrical properties. Copper is a noble metal such as Au and Ag a good alternative material, because it is highly conductive and than they is much more economical. Copper plays due to its excellent electrical conductivity plays an important role in electronic circuits. Copper nanoparticles are cheap and their properties can be controlled according to the synthetic method. Further, in the catalyst, the nanoparticle has a higher efficiency than the particles. Copper nanoparticles are synthesized by different techniques. The most important for the synthesis of copper nanoparticles are chemical methods such as chemical reduction, electrochemical techniques, photochemical reduction and thermal decomposition. Copper nanoparticles can be easily oxidized to form copper oxide. To avoid oxidation, these methods are usually carried out in a non-aqueous medium in low precursor concentration, and under an inert atmosphere (argon, nitrogen).

One of the most important methods for the synthesis of copper nanoparticles is the reduction chemical method. In this technique a copper salt is reduced by a reducing agent such as polyols, sodium borohydride, Hydrazine, Ascorbic acid, hypophosphite . In addition, it is used from capping agents such as Polyethylene glycol and poly (vinylpyrrolidone) . Some of the chemical reducing reactions can be carried out at room temperature. Salzemann et al used microemulsion method to synthesize nanoparticles of copper with size of 3-13 nm. Copper nanoparticles were produced by the polyol method in ambient atmosphere. The obtained nanoparticles were confirmed by XRD to be crystalline copper. SEM study shows that sizes of particles produced were 48±8 nm. Colloidal copper with particle sizes of 40–80 nm has been reported from reduction with sodium borohydride in aqueous solution at room temperature. The copper nanoparticles were stabilized by starch. In 2008, copper nanoparticles were synthesized by the reduction of Cu2+ in solutions of poly(acrylic acid)-pluronic blends results in a stable sol of metallic copper with a particle size below 10 nm. Reduction of copper ions by sodium borohydride in the presence of sodium polyacrylate was reported. Copper nanocrystals sizes were 14 nm. Chatterjee et al. presented a simple method for synthesis of metallic copper nanoparticles using Cucl2 as reducing agent and gelatin as stabilizer with a size of 50-60 nm.

Chemical reduction method is one of the micro-emulsion technology. Microemulsion containing at least three components, i.e. polar phase (typically water), non-polar phase (usually oil) and surfactant isotropic, macroscopically homogeneous and thermodynamically stable solution. Copper nanoparticle synthesis by reducing the non-ionic oil in water used to NaBH 4 (W / O) microemulsion of aqueous cupric chloride solution to achieve. Solanki and so on. Microemulsion reported synthesis of copper and copper sulfide nanoparticles. X-ray diffraction analysis confirmed that nanoparticles of metallic copper present. In 2013, facile synthesis of copper and copper oxide nanoparticles size adjustable proposed by Kumar et al. They found that the reduction with hydrazine hydrate gives copper nanoparticles in an inert atmosphere of nitrogen, and under aerobic conditions the reaction of sodium borohydride, to give copper (II) oxide nanoparticles. In another study, the copper salt is dissolved in dioxane / -AOT solution and the hydrazine hydrate under vigorous stirring reduced. Nano colloid size of 70-80 nm.

Related reading: silicon dioxide nanoparticles nano diamond powder